最新-时间序列-顶会顶刊论文汇总【论文/源码链接】

AI for Time Series (AI4TS) Papers, Tutorials, and Surveys

这半年一直在看时间序列相关的论文,这篇汇总非常有用,全是干货。建议收藏!
【搬运自[github]】【侵删】

A professionally curated list of papers (with available code), tutorials, and surveys on recent AI for Time Series Analysis (AI4TS), including Time Series, Spatio-Temporal Data, Event Data, Sequence Data, Temporal Point Processes, etc., at the Top AI Conferences and Journals, which is updated ASAP (the earliest time) once the accepted papers are announced in the corresponding top AI conferences/journals. Hope this list would be helpful for researchers and engineers who are interested in AI for Time Series Analysis.
【译文】专业策划的关于最近AI用于时间序列分析(AI4TS)的论文列表(有可用代码),教程和调查,包括时间序列,时空数据,事件数据,序列数据,时间点过程等,在顶级AI会议和期刊上,一旦被接受的论文在相应的顶级AI会议/期刊上公布,就会尽快更新(最早的时间)。希望这个列表对对时间序列分析的人工智能感兴趣的研究人员和工程师有所帮助。

The top conferences including:

  • Machine Learning: NeurIPS, ICML, ICLR
  • Data Mining: KDD, WWW
  • Artificial Intelligence: AAAI, IJCAI
  • Data Management: SIGMOD, VLDB, ICDE
  • Misc (selected): AISTAT, CIKM, ICDM, WSDM, SIGIR, ICASSP, CVPR, ICCV, etc.

The top journals including (mainly for survey papers):
CACM, PIEEE, TPAMI, TKDE, TNNLS, TITS, TIST, SPM, JMLR, JAIR, CSUR, DMKD, KAIS, IJF, arXiv(selected), etc.

If you find any missed resources (paper/code) or errors, please feel free to open an issue or make a pull request.

For general Recent AI Advances: Tutorials and Surveys in various areas (DL, ML, DM, CV, NLP, Speech, etc.) at the Top AI Conferences and Journals, please check This Repo.

Main Recent Update Note

  • [Mar. 04, 2024] Add papers accepted by ICLR’24, AAAI’24, WWW’24!
  • [Jul. 05, 2023] Add papers accepted by KDD’23!
  • [Jun. 20, 2023] Add papers accepted by ICML’23!
  • [Feb. 07, 2023] Add papers accepted by ICLR’23 and AAAI’23!
  • [Sep. 18, 2022] Add papers accepted by NeurIPS’22!
  • [Jul. 14, 2022] Add papers accepted by KDD’22!
  • [Jun. 02, 2022] Add papers accepted by ICML’22, ICLR’22, AAAI’22, IJCAI’22!

Table of Contents

AI4TS Tutorials and Surveys

AI4TS Tutorials

  • Out-of-Distribution Generalization in Time Series, in AAAI 2024. [Link]
  • Robust Time Series Analysis and Applications: An Interdisciplinary Approach, in ICDM 2023. [Link]
  • Robust Time Series Analysis and Applications: An Industrial Perspective, in KDD 2022. [Link]
  • Time Series in Healthcare: Challenges and Solutions, in AAAI 2022. [Link]
  • Time Series Anomaly Detection: Tools, Techniques and Tricks, in DASFAA 2022. [Link]
  • Modern Aspects of Big Time Series Forecasting, in IJCAI 2021. [Link]
  • Explainable AI for Societal Event Predictions: Foundations, Methods, and Applications, in AAAI 2021. [Link]
  • Physics-Guided AI for Large-Scale Spatiotemporal Data, in KDD 2021. [Link]
  • Deep Learning for Anomaly Detection, in KDD & WSDM 2020. [Link1] [Link2] [Link3]
  • Building Forecasting Solutions Using Open-Source and Azure Machine Learning, in KDD 2020. [Link]
  • Interpreting and Explaining Deep Neural Networks: A Perspective on Time Series Data, KDD 2020. [Link]
  • Forecasting Big Time Series: Theory and Practice, KDD 2019. [Link]
  • Spatio-Temporal Event Forecasting and Precursor Identification, KDD 2019. [Link]
  • Modeling and Applications for Temporal Point Processes, KDD 2019. [Link1] [Link2]

AI4TS Surveys

General Time Series Survey
  • What Can Large Language Models Tell Us about Time Series Analysis, in arXiv 2024. [paper]
  • Large Models for Time Series and Spatio-Temporal Data: A Survey and Outlook, in arXiv 2023. [paper] [Website]
  • Deep Learning for Multivariate Time Series Imputation: A Survey, in arXiv 2024. [paper] [Website]
  • Self-Supervised Learning for Time Series Analysis: Taxonomy, Progress, and Prospects, in arXiv 2023. [paper] [Website]
  • A Survey on Graph Neural Networks for Time Series: Forecasting, Classification, Imputation, and Anomaly Detection, in arXiv 2023. [paper] [Website]
  • Transformers in Time Series: A Survey, in IJCAI 2023. [paper] [GitHub Repo]
  • Time series data augmentation for deep learning: a survey, in IJCAI 2021. [paper]
  • Neural temporal point processes: a review, in IJCAI 2021. [paper]
  • Causal inference for time series analysis: problems, methods and evaluation, in KAIS 2022. [paper]
  • Survey and Evaluation of Causal Discovery Methods for Time Series, in JAIR 2022. [paper]
  • Deep learning for spatio-temporal data mining: A survey, in TKDE 2020. [paper]
  • Generative Adversarial Networks for Spatio-temporal Data: A Survey, in TIST 2022. [paper]
  • Spatio-Temporal Data Mining: A Survey of Problems and Methods, in CSUR 2018. [paper]
  • A Survey on Principles, Models and Methods for Learning from Irregularly Sampled Time Series, in NeurIPS Workshop 2020. [paper]
  • Count Time-Series Analysis: A signal processing perspective, in SPM 2019. [paper]
  • Wavelet transform application for/in non-stationary time-series analysis: a review, in Applied Sciences 2019. [paper]
  • Granger Causality: A Review and Recent Advances, in Annual Review of Statistics and Its Application 2014. [paper]
  • A Review of Deep Learning Methods for Irregularly Sampled Medical Time Series Data, in arXiv 2020. [paper]
  • Beyond Just Vision: A Review on Self-Supervised Representation Learning on Multimodal and Temporal Data, in arXiv 2022. [paper]
  • A Survey on Time-Series Pre-Trained Models, in arXiv 2023. [paper] [link]
  • Self-Supervised Learning for Time Series Analysis: Taxonomy, Progress, and Prospects, in arXiv 2023. [paper] [Website]
  • A Survey on Graph Neural Networks for Time Series: Forecasting, Classification, Imputation, and Anomaly Detection, in arXiv 2023. [paper] [Website]
Time Series Forecasting Survey
  • Forecasting: theory and practice, in IJF 2022. [paper]
  • Time-series forecasting with deep learning: a survey, in Philosophical Transactions of the Royal Society A 2021. [paper]
  • Deep Learning on Traffic Prediction: Methods, Analysis, and Future Directions, in TITS 2022. [paper]
  • Event prediction in the big data era: A systematic survey, in CSUR 2022. [paper]
  • A brief history of forecasting competitions, in IJF 2020. [paper]
  • Neural forecasting: Introduction and literature overview, in arXiv 2020. [paper]
  • Probabilistic forecasting, in Annual Review of Statistics and Its Application 2014. [paper]
Time Series Anomaly Detection Survey
  • A review on outlier/anomaly detection in time series data, in CSUR 2021. [paper]
  • Anomaly detection for IoT time-series data: A survey, in IEEE Internet of Things Journal 2019. [paper]
  • A Survey of AIOps Methods for Failure Management, in TIST 2021. [paper]
  • Sequential (quickest) change detection: Classical results and new directions, in IEEE Journal on Selected Areas in Information Theory 2021. [paper]
  • Outlier detection for temporal data: A survey, TKDE’13. [paper]
  • Anomaly detection for discrete sequences: A survey, TKDE’12. [paper]
  • Anomaly detection: A survey, CSUR’09. [paper]
Time Series Classification Survey
  • Deep learning for time series classification: a review, in Data Mining and Knowledge Discovery 2019. [paper]
  • Approaches and Applications of Early Classification of Time Series: A Review, in IEEE Transactions on Artificial Intelligence 2020. [paper]

[paper]

AI4TS Papers 2024

NeurIPS 2024

ICML 2024

ICLR 2024

Time Series Forecasting
  • Time-LLM: Time Series Forecasting by Reprogramming Large Language Models [paper] [official code]
  • TEST: Text Prototype Aligned Embedding to Activate LLM’s Ability for Time Series [paper] [official code]
  • TEMPO: Prompt-based Generative Pre-trained Transformer for Time Series Forecasting [paper]
  • DAM: A Foundation Model for Forecasting [paper]
  • CARD: Channel Aligned Robust Blend Transformer for Time Series Forecasting [paper] [official code]
  • Multi-scale Transformers with Adaptive Pathways for Time Series Forecasting [paper] [official code]
  • iTransformer: Inverted Transformers Are Effective for Time Series Forecasting [paper] [official code]
  • GAFormer: Enhancing Timeseries Transformers Through Group-Aware Embeddings [paper]
  • Transformer-Modulated Diffusion Models for Probabilistic Multivariate Time Series Forecasting [paper]
  • RobustTSF: Towards Theory and Design of Robust Time Series Forecasting with Anomalies [paper] [official code]
  • ModernTCN: A Modern Pure Convolution Structure for General Time Series Analysis [paper]
  • TimeMixer: Decomposable Multiscale Mixing for Time Series Forecasting [paper]
  • FITS: Modeling Time Series with 10k Parameters [paper]
  • Multi-Resolution Diffusion Models for Time Series Forecasting [paper]
  • MG-TSD: Multi-Granularity Time Series Diffusion Models with Guided Learning Process [paper]
  • Interpretable Sparse System Identification: Beyond Recent Deep Learning Techniques on Time-Series Prediction [paper]
  • TACTiS-2: Better, Faster, Simpler Attentional Copulas for Multivariate Time Series [paper]
  • Towards Transparent Time Series Forecasting [paper]
  • Biased Temporal Convolution Graph Network for Time Series Forecasting with Missing Values [paper]
  • Rethinking Channel Dependence for Multivariate Time Series Forecasting: Learning from Leading Indicators [paper]
  • VQ-TR: Vector Quantized Attention for Time Series Forecasting [paper]
  • Copula Conformal prediction for multi-step time series prediction [paper]
  • ClimODE: Climate Forecasting With Physics-informed Neural ODEs [paper]
  • STanHop: Sparse Tandem Hopfield Model for Memory-Enhanced Time Series Prediction [paper]
  • T-Rep: Representation Learning for Time Series using Time-Embeddings [paper]
  • Periodicity Decoupling Framework for Long-term Series Forecasting [paper]
  • Self-Supervised Contrastive Forecasting [paper]
Others
  • Explaining Time Series via Contrastive and Locally Sparse Perturbations [paper] [official code]
  • CausalTime: Realistically Generated Time-series for Benchmarking of Causal Discovery [paper] [official code]
  • SocioDojo: Building Lifelong Analytical Agents with Real-world Text and Time Series [paper]
  • Generative Learning for Financial Time Series with Irregular and Scale-Invariant Patterns [paper]
  • Stable Neural Stochastic Differential Equations in Analyzing Irregular Time Series Data [paper]
  • Soft Contrastive Learning for Time Series [paper]
  • Retrieval-Based Reconstruction For Time-series Contrastive Learning [paper]
  • Towards Enhancing Time Series Contrastive Learning: A Dynamic Bad Pair Mining Approach [paper]
  • Diffusion-TS: Interpretable Diffusion for General Time Series Generation [paper]
  • Disentangling Time Series Representations via Contrastive based l-Variational Inference [paper]
  • Leveraging Generative Models for Unsupervised Alignment of Neural Time Series Data [paper]
  • Conditional Information Bottleneck Approach for Time Series Imputation [paper]
  • Generative Modeling of Regular and Irregular Time Series Data via Koopman VAEs [paper]
  • Learning to Embed Time Series Patches Independently [paper]
  • Parametric Augmentation for Time Series Contrastive Learning [paper]
  • Inherently Interpretable Time Series Classification via Multiple Instance Learning [paper]

KDD 2024

WWW 2024

Time Series Forecasting
  • UniTime: A Language-Empowered Unified Model for Cross-Domain Time Series Forecasting [paper]
  • Unveiling Delay Effects in Traffic Forecasting: A Perspective from Spatial-Temporal Delay Differential Equations [paper]
Time Series Anomaly Detection
  • LARA: A Light and Anti-overfitting Retraining Approach for Unsupervised Time Series Anomaly Detection [paper]
  • Revisiting VAE for Unsupervised Time Series Anomaly Detection: A Frequency Perspective [paper]
  • Breaking the Time-Frequency Granularity Discrepancy in Time-Series Anomaly Detection [paper]
Others
  • Dynamic Multi-Network Mining of Tensor Time Series [paper]

  • E2USD: Efficient-yet-effective Unsupervised State Detection for Multivariate Time Series [paper]

AAAI 2024

Time Series Forecasting
  • U-Mixer: An Unet-Mixer Architecture with Stationarity Correction for Time Series Forecasting [paper]
  • HDMixer: Hierarchical Dependency with Extendable Patch for Multivariate Time Series Forecasting [paper]
  • Considering Nonstationary within Multivariate Time Series with Variational Hierarchical Transformer for Forecasting [paper]
  • Learning from Polar Representation: An Extreme-Adaptive Model for Long-Term Time Series Forecasting [paper]
  • MSGNet: Learning Multi-Scale Inter-Series Correlations for Multivariate Time Series Forecasting [paper]
  • Latent Diffusion Transformer for Probabilistic Time Series Forecasting [paper]
  • Spatio-Temporal Pivotal Graph Neural Networks for Traffic Flow Forecasting [paper]
Time Series Classification, Clustering, Anomaly Detection
  • Graph-Aware Contrasting for Multivariate Time-Series Classification [paper]
  • Diffusion Language-Shapelets for Semisupervised Time-series Classification [paper]
  • Energy-efficient Streaming Time Series Classification with Attentive Power Iteration [paper]
  • Cross-Domain Contrastive Learning for Time Series Clustering [paper]
  • When Model Meets New Normals: Test-time Adaptation for Unsupervised Time-series Anomaly Detection
### 时间序列预测研究综述 时间序列预测一直是学术界和工业界的热点话题,在金融分析、天气预报等领域有着广泛应用。为了获取最新级期刊中的相关研究成果,通常可以从以下几个方面入手: #### 1. 数据集与模型评估标准 在评价不同算法性能时,研究人员常用特定的数据集作为基准,并采用多种度量指标来衡量准确性。例如,在财务披露决策支持系统中,已经采用了深度学习方法改进传统统计技术,展示了更优的结果[^2]。 #### 2. 方法论进展 近年来,随着机器学习特别是深度学习的发展,许多新颖的时间序列建模框架被提出。这些新方法不仅限于简单的线性回归或ARIMA模型,还包括复杂的神经网络架构如LSTM(长短期记忆)、GRU(门控循环单元),以及Transformer等自注意力机制驱动的模型。值得注意的是,贝叶斯网络也在某些应用场景下表现出色,尤其是在处理具有复杂依赖关系的数据时[^1]。 #### 3. 应用领域拓展 除了传统的经济金融外,其他行业也开始重视起时间序列数据分析的价值。比如生物信息学里基因表达模式识别;交通工程里的车流量预估等问题都可以转化为典型的时间序列任务来进行深入探讨。 ```python import pandas as pd from datetime import datetime def fetch_latest_research(publish_date='2023'): """ 获取指定年份之后发表的相关高质量论文列表 参数: publish_date (str): 起始日期,默认为'2023' 返回: DataFrame: 包含标题、作者、摘要等内容的文章记录表 """ # 假设这里有一个API接口用于查询数据库 query_result = [ {"title": "Deep Learning for Time Series Forecasting", "authors": ["John Doe"], "abstract": "...", "journal": "Nature Machine Intelligence"}, ... ] df = pd.DataFrame(query_result) mask = df['publish_date'] >= datetime.strptime(publish_date, '%Y') filtered_df = df[mask] return filtered_df ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值