实验|Vachel 算力支持|幻方AIHPC
气象预测直接关乎人类社会的生产生活,一直以来是人类重点研究的科学领域之一。传统的天气预报采用非常复杂的数值气象模型,近年来越来越多的机器学习,深度学习方法被应用到这一领域,他们将气象预测抽象成一个时空预测问题,尝试通过多维时间序列、图神经网络(GNN)等方法来解决。
AAAI 2022前不久公布了今年的 Accept Paper List,其中来自西湖大学的几位研究者联合发表了一项科研成果。他们针对近年来交通流预测任务下的图神经网络模型,认为其架构不能直接照搬进气象预测领域并进行了证明。提出了一系列改进方法,最终模型取得了SOTA的效果。
本期模型试跑将为大家体验该项研究成果,来看看最近火热的GNN是否可以有效提升气象预测的精度,缩短预测时间。
论文标题:Conditional Local Convolution for Spatio-temporal Meteorological Forecasting
论文地址:https://arxiv.org/abs/2101.01000
论文源码:https://github.com/BIRD-TAO/CLCRN
01 模型介绍
在交通流预测领域中,“GNN+RNN”的方法近年来获得了许多成功,其静态切片空间的图结构抽象,到动态时间上的embedding累积,有效解决了时空预测场景下的图动态问题。与交通流预测类似,气象预测也可以抽象为一个时空预测问题。然而,只是简单的套用交通流预测的方法,往往不能取得很好的效果。
气象预测领域的特殊性有:
-
数据的不规则性:分布世界各地、太空卫星的各种气象传感器所捕捉的气象数据往往是不规则的,使得经典的CNN无法适用。
-
非平面的数据信号:气象数据通常是立