模型实践 | AAAI 2022 气象预测之时空图神经网络

这篇博客介绍了AAAI 2022上关于气象预测的研究,研究者们提出了利用时空图神经网络(GNN)解决气象预测问题,针对气象数据的不规则性和非平面特性进行了模型改进,达到了SOTA效果。通过球数据结构和条件局部卷积核,模型能更好地处理气象的时空依赖。文章分享了模型实践,包括数据集、模型训练,并讨论了模型的局限性和未来研究方向。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

实验|Vachel       算力支持|幻方AIHPC

气象预测直接关乎人类社会的生产生活,一直以来是人类重点研究的科学领域之一。传统的天气预报采用非常复杂的数值气象模型,近年来越来越多的机器学习,深度学习方法被应用到这一领域,他们将气象预测抽象成一个时空预测问题,尝试通过多维时间序列、图神经网络(GNN)等方法来解决。

AAAI 2022前不久公布了今年的 Accept Paper List,其中来自西湖大学的几位研究者联合发表了一项科研成果。他们针对近年来交通流预测任务下的图神经网络模型,认为其架构不能直接照搬进气象预测领域并进行了证明。提出了一系列改进方法,最终模型取得了SOTA的效果。

本期模型试跑将为大家体验该项研究成果,来看看最近火热的GNN是否可以有效提升气象预测的精度,缩短预测时间。

High-flyer AIHPC 萤火二号使用申请

论文标题:Conditional Local Convolution for Spatio-temporal Meteorological Forecasting

论文地址:https://arxiv.org/abs/2101.01000

论文源码:https://github.com/BIRD-TAO/CLCRN

01 模型介绍

在交通流预测领域中,“GNN+RNN”的方法近年来获得了许多成功,其静态切片空间的图结构抽象,到动态时间上的embedding累积,有效解决了时空预测场景下的图动态问题。与交通流预测类似,气象预测也可以抽象为一个时空预测问题。然而,只是简单的套用交通流预测的方法,往往不能取得很好的效果。

气象预测领域的特殊性有:

  1. 数据的不规则性:分布世界各地、太空卫星的各种气象传感器所捕捉的气象数据往往是不规则的,使得经典的CNN无法适用。

  2. 非平面的数据信号:气象数据通常是立

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

幻方AI小编

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值