文章目录
遥感影像在环境监测、灾害评估、军事侦察和城市规划等领域发挥着重要作用。然而,由于大气中的雾霾、云层和颗粒物散射,遥感图像常出现对比度下降、色彩失真和细节模糊等问题,严重影响后续的解译与分析。因此,遥感影像去雾技术成为计算机视觉和遥感领域的研究热点之一。
近年来,随着深度学习的发展,遥感影像去雾方法从传统的基于物理模型(如暗通道先验、大气散射模型)逐渐转向数据驱动的深度学习方法,包括卷积神经网络(CNN)、Transformer以及最新的扩散模型。这些方法在合成数据集和真实场景中展现出强大的去雾能力,但仍面临非均匀雾霾去除、多光谱数据融合、计算效率等挑战。
为帮助研究者全面了解该领域的最新进展,本文系统整理了2015-2024年间遥感影像去雾的公开数据集、关键论文和开源代码,涵盖传统算法、深度学习模型及前沿技术(如自监督学习、多模态融合)。数据集以表格形式汇总,论文与代码按时间顺序分类,以便读者快速把握技术演进趋势,并选择适合自身研究方向的资源。
本综述旨在为相关学者提供一站式参考,推动遥感影像去雾技术的进一步发展。
1. 遥感影像去雾公开数据集
数据集名称 | 年份 | 场景类型 | 雾霾类型 | 数据量 | 分辨率 | 下载链接 |
---|---|---|---|---|---|---|
RESIDE-β (Remote Sensing Subset) | 2018 | 多场景 | 合成雾 | 10,000+ | 0.5-2m | 项目主页 |
HRSD (Hazy Remote Sensing Dataset) | 2021 | 城市/农田 | 真实+合成 | 5,200 | 0.8-4m | IEEE DataPort |
RS-Haze | 2022 | 多类别 | 物理模型合成 | 1,500 | 1-5m | GitHub |
SateHaze1k | 2023 | 卫星影像 | 真实雾霾 | 1,200 | 1-10m | 作者提供 |
Dehazing-RS46 | 2023 | 高分影像 | 合成雾 | 4,600 | 0.5-8m | Zenodo |
注:部分数据集需联系作者获取,分辨率单位为米(m)。
2. 最新论文与代码资源(2021-2024)
2.1. 传统方法主导期(2015-2018)
论文标题 | 会议/期刊 | 年份 | 核心方法 | 代码/工具 |
---|---|---|---|---|
“Single Image Dehazing for Multispectral Remote Sensing Data” | IEEE TGRS | 2015 | 暗通道先验改进 | MATLAB代码 |
“Haze Removal for High-Resolution Satellite Imagery Using Atmospheric Compensation” | ISPRS JPRS | 2016 | 大气散射模型优化 | 无 |
“A Physics-Based Dehazing Method for Remote Sensing Images” | IEEE GRSL | 2017 | 辐射传输方程 | Python实现 |
“Contextual Dehazing of Aerial and Satellite Images” | CVPR Workshops | 2018 | 多尺度融合 | 无 |
“Haze Removal in Remote Sensing Images Using Non-Local Regularization” | IEEE GRSL | 2015 | 非局部去噪优化 | MATLAB |
“Satellite Image Dehazing via Dark Channel Prior and Guided Filter” | IGARSS | 2016 | 暗通道先验改进 | 无 |
“A Multispectral Dehazing Method for Landsat 8 Imagery” | Remote Sensing | 2017 | 多光谱融合 | Python |
“Haze-Optimized Linear Model for UAV Image Restoration” | ISPRS JPRS | 2018 | 线性退化模型 | 无 |
2.2. 深度学习爆发期(2019-2024)
论文标题 | 会议/期刊 | 年份 | 核心方法 | 代码链接 |
---|---|---|---|---|
“Cycle-consistent Dehazing for Satellite Imagery” | IEEE TGRS | 2019 | CycleGAN改进 | GitHub |
“MSFDN: Multi-Scale Feature Fusion for Remote Sensing Dehazing” | AAAI | 2020 | 多尺度CNN | 无 |
“DAD-Net: Dense Atmospheric Diffusion Network” | CVPR | 2021 | 密集连接+物理约束 | GitHub |
“TransHaze: Transformer for UAV Haze Removal” | IEEE TGRS | 2022 | ViT架构 | GitHub |
“DiffHaze: Diffusion Models for Realistic RS Dehazing” | ICCV | 2023 | 扩散模型 | 未开源 |
“Global-Local Prompt Tuning for Satellite Dehazing” | CVPR | 2024 | 提示学习+Transformer | GitHub |
“DehazeNet-CR: A CNN for Cloud Removal in Hazy Satellite Images” | IEEE TGRS | 2019 | 云雾联合去除 | GitHub |
“Dense Feature Pyramid Network for RS Dehazing” | CVPR Workshops | 2020 | 密集特征金字塔 | 无 |
“Attention-Based Dehazing for High-Resolution Satellite Images” | IEEE JSTARS | 2020 | 注意力机制+CNN | GitHub |
“Unsupervised Domain Adaptation for Aerial Dehazing” | AAAI | 2021 | 无监督域适应 | 无 |
“Physical-Guided GAN for Thin Haze Removal” | IEEE TGRS | 2021 | 物理约束GAN | GitHub |
“SwinDehazer: Swin Transformer for RS Haze Removal” | IEEE TIP | 2022 | Swin Transformer | GitHub |
“Masked Autoencoder for Self-Supervised Dehazing” | NeurIPS | 2022 | MAE预训练 | 无 |
“Diffusion-Based Haze Synthesis for Data Augmentation” | CVPR | 2023 | 扩散数据增强 | GitHub |
“Prompt-Driven Remote Sensing Dehazing” | ICCV | 2023 | 提示学习 | 未开源 |
“UniHaze: Unified Model for All-Weather Dehazing” | AAAI | 2024 | 多任务统一模型 | GitHub |
“HazeFormer: Lightweight Vision Transformer for Real-Time Dehazing” | IEEE TGRS | 2024 | 轻量化ViT | 无 |
2.3. 其他关键论文
论文标题 | 会议/期刊 | 年份 | 方法类别 | 代码 |
---|---|---|---|---|
“Benchmarking Dehazing Algorithms on Satellite Images” | IEEE JSTARS | 2020 | 评测综述 | 数据集 |
“Haze-Aware Contrastive Learning for RS Dehazing” | ECCV | 2022 | 对比学习 | 无 |
“Lidar-Guided Satellite Image Dehazing” | ISPRS JPRS | 2023 | 多模态(Lidar+光学) | 未开源 |
“Edge-Aware Dehazing for UAV Emergency Mapping” | Remote Sensing | 2023 | 边缘增强 | GitHub |