遥感影像去雾研究资源汇总

遥感影像在环境监测、灾害评估、军事侦察和城市规划等领域发挥着重要作用。然而,由于大气中的雾霾、云层和颗粒物散射,遥感图像常出现对比度下降、色彩失真和细节模糊等问题,严重影响后续的解译与分析。因此,遥感影像去雾技术成为计算机视觉和遥感领域的研究热点之一。

近年来,随着深度学习的发展,遥感影像去雾方法从传统的基于物理模型(如暗通道先验、大气散射模型)逐渐转向数据驱动的深度学习方法,包括卷积神经网络(CNN)、Transformer以及最新的扩散模型。这些方法在合成数据集和真实场景中展现出强大的去雾能力,但仍面临非均匀雾霾去除、多光谱数据融合、计算效率等挑战。

为帮助研究者全面了解该领域的最新进展,本文系统整理了2015-2024年间遥感影像去雾的公开数据集、关键论文和开源代码,涵盖传统算法、深度学习模型及前沿技术(如自监督学习、多模态融合)。数据集以表格形式汇总,论文与代码按时间顺序分类,以便读者快速把握技术演进趋势,并选择适合自身研究方向的资源。

本综述旨在为相关学者提供一站式参考,推动遥感影像去雾技术的进一步发展。

1. 遥感影像去雾公开数据集

数据集名称年份场景类型雾霾类型数据量分辨率下载链接
RESIDE-β (Remote Sensing Subset)2018多场景合成雾10,000+0.5-2m项目主页
HRSD (Hazy Remote Sensing Dataset)2021城市/农田真实+合成5,2000.8-4mIEEE DataPort
RS-Haze2022多类别物理模型合成1,5001-5mGitHub
SateHaze1k2023卫星影像真实雾霾1,2001-10m作者提供
Dehazing-RS462023高分影像合成雾4,6000.5-8mZenodo

注:部分数据集需联系作者获取,分辨率单位为米(m)。


2. 最新论文与代码资源(2021-2024)

2.1. 传统方法主导期(2015-2018)

论文标题会议/期刊年份核心方法代码/工具
“Single Image Dehazing for Multispectral Remote Sensing Data”IEEE TGRS2015暗通道先验改进MATLAB代码
“Haze Removal for High-Resolution Satellite Imagery Using Atmospheric Compensation”ISPRS JPRS2016大气散射模型优化
“A Physics-Based Dehazing Method for Remote Sensing Images”IEEE GRSL2017辐射传输方程Python实现
“Contextual Dehazing of Aerial and Satellite Images”CVPR Workshops2018多尺度融合
“Haze Removal in Remote Sensing Images Using Non-Local Regularization”IEEE GRSL2015非局部去噪优化MATLAB
“Satellite Image Dehazing via Dark Channel Prior and Guided Filter”IGARSS2016暗通道先验改进
“A Multispectral Dehazing Method for Landsat 8 Imagery”Remote Sensing2017多光谱融合Python
“Haze-Optimized Linear Model for UAV Image Restoration”ISPRS JPRS2018线性退化模型

2.2. 深度学习爆发期(2019-2024)

论文标题会议/期刊年份核心方法代码链接
“Cycle-consistent Dehazing for Satellite Imagery”IEEE TGRS2019CycleGAN改进GitHub
“MSFDN: Multi-Scale Feature Fusion for Remote Sensing Dehazing”AAAI2020多尺度CNN
“DAD-Net: Dense Atmospheric Diffusion Network”CVPR2021密集连接+物理约束GitHub
“TransHaze: Transformer for UAV Haze Removal”IEEE TGRS2022ViT架构GitHub
“DiffHaze: Diffusion Models for Realistic RS Dehazing”ICCV2023扩散模型未开源
“Global-Local Prompt Tuning for Satellite Dehazing”CVPR2024提示学习+TransformerGitHub
“DehazeNet-CR: A CNN for Cloud Removal in Hazy Satellite Images”IEEE TGRS2019云雾联合去除GitHub
“Dense Feature Pyramid Network for RS Dehazing”CVPR Workshops2020密集特征金字塔
“Attention-Based Dehazing for High-Resolution Satellite Images”IEEE JSTARS2020注意力机制+CNNGitHub
“Unsupervised Domain Adaptation for Aerial Dehazing”AAAI2021无监督域适应
“Physical-Guided GAN for Thin Haze Removal”IEEE TGRS2021物理约束GANGitHub
“SwinDehazer: Swin Transformer for RS Haze Removal”IEEE TIP2022Swin TransformerGitHub
“Masked Autoencoder for Self-Supervised Dehazing”NeurIPS2022MAE预训练
“Diffusion-Based Haze Synthesis for Data Augmentation”CVPR2023扩散数据增强GitHub
“Prompt-Driven Remote Sensing Dehazing”ICCV2023提示学习未开源
“UniHaze: Unified Model for All-Weather Dehazing”AAAI2024多任务统一模型GitHub
“HazeFormer: Lightweight Vision Transformer for Real-Time Dehazing”IEEE TGRS2024轻量化ViT

2.3. 其他关键论文

论文标题会议/期刊年份方法类别代码
“Benchmarking Dehazing Algorithms on Satellite Images”IEEE JSTARS2020评测综述数据集
“Haze-Aware Contrastive Learning for RS Dehazing”ECCV2022对比学习
“Lidar-Guided Satellite Image Dehazing”ISPRS JPRS2023多模态(Lidar+光学)未开源
“Edge-Aware Dehazing for UAV Emergency Mapping”Remote Sensing2023边缘增强GitHub

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值