上手用卷积提升MNIST数据集识别准确度

首先简单了解卷积神经网络的原理
卷积
对于一张输入图片, 将其转化为矩阵, 矩阵的元素为对应的像素值. 假设有一个 5×5的图像,使用一个 3×3 的卷积核进行卷积,可得到一个 3×3的特征图. 卷积核也称为滤波器(Filter).
在这里插入图片描述
具体操作如下:
在这里插入图片描述
对应相乘再相加,得到卷积后的矩阵。
如果滑动步幅大于 1, 则卷积核有可能无法恰好滑到边缘, 针对这种情况, 可在矩阵最外层补零, 补一层零后的矩阵如下图所示:
在这里插入图片描述
一般情况下, 输入的图片矩阵以及后面的卷积核, 特征图矩阵都是方阵, 这里设输入矩阵大小为 w, 卷积核大小为 k, 步幅为 s, 补零层数为 p, 则卷积后产生的特征图大小计算公式为:
在这里插入图片描述
池化
池化又叫下采样(Dwon sampling), 与之相对的是上采样(Up sampling). 卷积得到的特征图一般需要一个池化层以降低数据量. 池化的操作如下图所示(最大池化):在这里插入图片描述
和卷积一样, 池化也有一个滑动的核, 可以称之为滑动窗口, 上图中滑动窗口的大小为 2×2, 步幅为 2, 每滑动到一个区域, 则取最大值作为输出, 这样的操作称为 Max Pooling. 还可以采用输出均值的方式, 称为 Mean Pooling.
这样开始用官方的mnist实战了解卷积的实现过程吧
具体有相关注释内容可参考

#导入库
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
import pylab
# 读入数据    标签独热编码
mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)
#print("查看一个数据:",mnist.train.images[0,:])   #一行784,也就是28*28
print("查看训练集维度:",mnist.train.images.shape)
print("查看训练标签维度:",mnist.train.labels.shape)
print("输出一张图:")
im = mnist.train.images[1,:]  #索引从零开始的
im = im.reshape(-1,28)  #-1是不管多少,就先不管行,但是保证列必须是28
pylab.imshow(im)
pylab.show()

在这里插入图片描述

#调用创建给定形状的变量
def weight_variable(shape):
    initial = tf.truncated_normal(shape, stddev=0.1)    #高斯分布随机值(正态分布)
    return tf.Variable(initial)

#调用创建全0.1的偏置项
def bias_variable(shape):
    initial = tf.constant(0.1, shape=shape)
    return tf.Variable(initial)

#调用卷积操作   W卷积核   strides=[1, 1, 1, 1]步长,前后为一,中间为形状  padding可以用SAME和VALID两种方式   
def conv2d(x, W):
    return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')

#调用池化操作   [batch, in_height, in_width, in_channels]
def max_pool_2x2(x):
    return tf.nn.max_pool(x, ksize=[1, 2, 2, 1],strides=[1, 2, 2, 1], padding='SAME')

if __name__ == '__main__':  #这是python的语法,只能在本模块内执行,其他调用不执行
    
    # x为训练图像的占位符、y_为训练图像标签的占位符
    x = tf.placeholder(tf.float32, [None, 784])    #28*28
    y_ = tf.placeholder(tf.float32, [None, 10])    #分类10

    # 将单张图片从784维向量重新还原为28x28的矩阵图片
    x_image = tf.reshape(x, [-1, 28, 28, 1])

    # 第一层卷积层
    W_conv1 = weight_variable([5, 5, 1, 32])   #[高度, 宽度, 通道数, 特征数]
    b_conv1 = bias_variable([32])
    h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1,name='h_conv1')
    h_pool1 = max_pool_2x2(h_conv1)

    # 第二层卷积层
    W_conv2 = weight_variable([5, 5, 32, 64])
    b_conv2 = bias_variable([64])
    h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2,name='h_conv2')
    h_pool2 = max_pool_2x2(h_conv2)

    # 全连接层,输出为1024维的向量
    W_fc1 = weight_variable([7 * 7 * 64, 1024])
    b_fc1 = bias_variable([1024])
    h_pool2_flat = tf.reshape(h_pool2, [-1, 7 * 7 * 64],name='h_pool2_flat')
    h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1,name='h_fc1')
    # 使用Dropout,keep_prob是一个占位符,训练时为0.5,测试时为1,防止过拟合,随机暂时禁用部分神经元
    keep_prob = tf.placeholder(tf.float32,name='keep_prob')
    h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)

    # 把1024维的向量转换成10维,对应10个类别
    W_fc2 = weight_variable([1024, 10])
    b_fc2 = bias_variable([10])
    y_conv = tf.matmul(h_fc1_drop, W_fc2) + b_fc2

    # 直接用tf.nn.softmax_cross_entropy_with_logits,打分
    cross_entropy = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y_, logits=y_conv),name='cross_entropy')
    # 定义train_step,梯度下降,带动量
    train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy,name='train_step')

    # 定义测试的准确率  tf.argmax(y_conv, 1)返回每一行最大索引   tf.argmax(y_conv, 0)返回每一列最大索引
    correct_prediction = tf.equal(tf.argmax(y_conv, 1), tf.argmax(y_, 1))
    accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
    
    # 创建Session和变量初始化
    sess = tf.InteractiveSession()
    sess.run(tf.global_variables_initializer())
    writer = tf.summary.FileWriter('./log/graphs/mnist_CNN', sess.graph)

    # 训练10000步
    for i in range(10000):
        #返回两个阵列,其中,所述第一表示一批的元组batch_sizeMNIST图像,所述第二表示一批batch-size对应于这些图像的标签
        batch = mnist.train.next_batch(50)
        # 每1000步报告一次在验证集上的准确度
        if i % 1000 == 0:
            #keep_prob: 1.0,测试集保留全部(dropout)
            train_accuracy = accuracy.eval(feed_dict={x: batch[0], y_: batch[1], keep_prob: 1.0})
            print("step %d, training accuracy %g" % (i, train_accuracy))
        train_step.run(feed_dict={x: batch[0], y_: batch[1], keep_prob: 0.5})
    writer.close()

    # 训练结束后报告在测试集上的准确度
    print("test accuracy %g" % accuracy.eval(feed_dict={x: mnist.test.images, y_: mnist.test.labels, keep_prob: 1.0}))

在这里插入图片描述
可以看到已经达到0.99之多,准确率提高了不少。
tensorboard图如下:
在这里插入图片描述
这样卷积来实现手写体识别就完成了。
原理参考地址:https://campoo.cc/cnn/
卷积具体动画算法可访问:https://github.com/vdumoulin/conv_arithmetic
代码参考官网:https://www.tensorflow.org/

  • 1
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值