莫比乌斯反演与狄利克雷卷积

积性函数

对 于 g c d ( a , b ) = 1 , 都 有 f ( a b ) = f ( a ) ∗ f ( b ) 。 那 么 f ( n ) 是 积 性 函 数 对于gcd(a,b)=1, 都有 f(ab)=f(a)*f(b)。那么f(n)是积性函数 gcd(a,b)=1,f(ab)=f(a)f(b)f(n)

欧拉函数 ϕ ( n ) \phi(n) ϕ(n)是一个积性函数,对于一个素数 p p p。有:
ϕ ( p ) = p − 1 \phi(p)=p-1 ϕ(p)=p1, ϕ ( p k ) = p k − p k − 1 = ( p − 1 ) p k − 1 \phi(p^k)=p^k-p^{k-1}=(p-1)p^{k-1} ϕ(pk)=pkpk1=(p1)pk1第一个就根据定义理解,第二个就稍微容斥一下就可以了。

莫比乌斯函数 μ \mu μ

莫比乌斯函数完整定义的通俗表达:

1)莫比乌斯函数 μ ( n ) μ(n) μ(n)的定义域是 N N N

2) μ ( 1 ) = 1 μ(1)=1 μ(1)=1

3)当 n n n存在平方因子时, μ ( n ) = 0 μ(n)=0 μ(n)=0

4)当 n n n是素数或奇数个不同素数之积时, μ ( n ) = − 1 μ(n)=-1 μ(n)=1

5)当 n n n是偶数个不同素数之积时, μ ( n ) = 1 μ(n)=1 μ(n)=1

性质:当 n n n不为 1 1 1时, n n n的所有因子的 μ \mu μ之和等于 0 0 0

∑ d ∣ n μ ( d ) = 0 ,   ( n    ! = 1 ) {\sum_{d|n}\mu(d)}=0,\ (n\ \ !=1) dnμ(d)=0, (n  !=1)

性质: ∑ d ∣ n μ ( d ) d = ϕ ( n ) n \sum_{d|n}{\frac{\mu(d)}{d}}=\frac{\phi(n)}{n} dndμ(d)=nϕ(n)
μ \mu μ
  • Θ ( n ) \Theta(n) Θ(n)线性筛求出1~n的 μ \mu μ
inline void eluer() {
    vis[1] = 1; mu[1] = 1;
    for (int i = 2; i < N; ++i) {
        if (!vis[i]) {
            prime[++tot] = i;
            mu[i] = -1;
        }
        for (int j = 1; j <= tot; ++j) {
            LL cur = i * prime[j];
            if (cur >= (LL)N) break;
            vis[cur] = 1;
            if (i % prime[j] == 0) {
                mu[cur] = 0;
                break;
            }
            else mu[cur] = -mu[i];
        }
    }
}

解释和说明:如果 i % p r i m e [ j ] = 0 i\%prime[j]=0 i%prime[j]=0的话 ,说明 c u r cur cur p r i m e [ j ] prime[j] prime[j]因子至少已经出现了2次。否则因为 μ \mu μ是积性函数, i i i p r i m e [ j ] prime[j] prime[j]又显然互质,所以 μ ( c u r ) = μ ( i ) ∗ μ ( p r i m e [ j ] ) = − μ ( i ) \mu(cur)=\mu(i)*\mu(prime[j])=-\mu(i) μ(cur)=μ(i)μ(prime[j])=μ(i)

ϕ \phi ϕ
  • Θ ( n ) \Theta(n) Θ(n)线性筛求1~n的 ϕ \phi ϕ
inline void eluer() {
    vis[1] = 1; phi[1] = 1;
    for (int i = 1; i < N; ++i) {
        if (!vis[i]) {
            prime[++tot] = i;
            phi[i] = i - 1;
        }
        for (int j = 1; j <= tot; ++j) {
            LL cur = i * prime[j];
            if (cur >= N) break;
            vis[cur] = 1;
            if (i % prime[j] == 0) {
                phi[cur] = phi[i] * prime[j];
                break;
            }
            else phi[cur] = phi[i] * (prime[j] - 1);
        }
    }
}

解释和说明:首先如果 p p p为一个质数,自然 ϕ ( p ) = p − 1 \phi(p)=p-1 ϕ(p)=p1。当 i % p r i m e [ j ] = 0 i\%prime[j]=0 i%prime[j]=0时, i i i“包含”了 p r i m e [ j ] prime[j] prime[j],所以 p r i m e [ j ] prime[j] prime[j] c u r cur cur的质因子的数目没有新的贡献。(不妨考虑根据素因子来计算 ϕ \phi ϕ的那个式子,就只有前面的 n n n扩大了,质因子都是不变的,正确性显然啦! )所以 ϕ [ c u r ] = ϕ [ i ] ∗ p r i m e [ j ] \phi[cur]=\phi[i]*prime[j] ϕ[cur]=ϕ[i]prime[j]。当 i % p r i m e [ j ] ! = 0 i\%prime[j]!=0 i%prime[j]!=0时, i 和 p r i m e [ j ] i和prime[j] iprime[j]显然互质,根据 ϕ \phi ϕ是一个积性函数,有 ϕ [ c u r ] = ϕ [ i ] ∗ ϕ [ p r i m e [ j ] ] = ϕ [ i ] ∗ ( p r i m e [ j ] − 1 ) \phi[cur]=\phi[i]*\phi[ prime[j]]=\phi[i]*(prime[j]-1) ϕ[cur]=ϕ[i]ϕ[prime[j]]=ϕ[i](prime[j]1)

求1~n的约数个数
  • O ( n ) O(n) O(n)线性筛!
inline void eluer() {
    vis[1] = 1; f[1] = 1;
    for (int i = 2; i < N; ++i) {
        if (!vis[i]) {
            prime[++tot] = i;
            f[i] = 2;
            d[i] = 1;
        }
        for (int j = 1; j <= tot; ++j) {
            LL cur = 1LL * i * prime[j];
            if (cur >= N) break;
            vis[cur] = 1;
            if (!(i % prime[j])) {
                f[cur] = f[i] / (d[i] + 1) * (d[i] + 2);
                d[cur] = d[i] + 1;
                break;
            }
            else {
                f[cur] = f[i] * 2;
                d[cur] = 1;
            }
        }
    }
}

解释和说明: f [ i ] f[i] f[i]表示 i i i的约数个数, d [ i ] d[i] d[i]表示 i i i的最小质因子的次幂。
如果 i i i为质数,没什么好说的。 c u r cur cur一定是被它的最小素因子 p r i m e [ j ] prime[j] prime[j]给筛掉的。所以如果 p r i m e [ j ] ∣ i prime[j]|i prime[j]i的话,意会一下是 c u r cur cur有平方因子 p r i m e [ j ] prime[j] prime[j]。所以要重新算 p r i m e [ j ] prime[j] prime[j]的次数的贡献。若 p r i m e ! ∣ j prime!|j prime!j,因为 f f f是积性函数, f ( c u r ) = f ( i ) ∗ f ( p r i m e [ j ] ) = 2 f ( i ) f(cur)=f(i)*f(prime[j])=2f(i) f(cur)=f(i)f(prime[j])=2f(i),最小素因子为 p r i m e [ j ] prime[j] prime[j]

莫比乌斯反演

其实莫比乌斯反演的式子和狄利克雷卷积是密不可分的。

莫比乌斯反演一般可以处理这样一个形式的题目:

如果你有一些限制,你要求解满足这些限制的一些数或者数对的个数。
f ( n ) f(n) f(n)表示 n n n这个范围之内的答案, F ( n ) = ∑ d ∣ n f ( d ) F(n)=\sum_{d|n}f(d) F(n)=dnf(d)(其实 F = f ∗ 1 F=f*1 F=f1)。

那么根据后面的数论函数的相关内容:
F = f ∗ 1 &lt; = &gt; F ∗ μ = f ∗ 1 ∗ μ &lt; = &gt; F ∗ μ = f ∗ ϵ = f F=f*1\quad &lt;=&gt;\quad F*\mu=f*1*\mu\quad&lt;=&gt;F*\mu=f*\epsilon=f F=f1<=>Fμ=f1μ<=>Fμ=fϵ=f
故: f ( n ) = ∑ d ∣ n μ ( d ) ∗ F ( n d ) ( 1 ) f(n)=\sum_{d|n}\mu(d)*F(\frac{n}{d})\quad(1) f(n)=dnμ(d)F(dn)(1)

如果我们规定 F ( n ) = ∑ n ∣ d f ( d ) F(n)=\sum_{n|d}f(d) F(n)=ndf(d)的话:
同理有
f ( n ) = ∑ n ∣ d μ ( d n ) ∗ F ( d ) ( 2 ) f(n)=\sum_{n|d}\mu(\frac{d}{n})*F(d)\quad(2) f(n)=ndμ(nd)F(d)(2)

一个较好的证明
https://blog.csdn.net/outer_form/article/details/50588307
一个非常适合初学者的blog(可以说是莫反最简化的一种理解)
https://www.luogu.org/blog/An-Amazing-Blog/mu-bi-wu-si-fan-yan-ji-ge-ji-miao-di-dong-xi

初等变换 [ A = 1 ] = ∑ d ∣ A μ ( d ) [A = 1] = \sum_{d|A}\mu(d) [A=1]=dAμ(d)

(虽说这个初等变换不能解决所有需要反演的问题,但是一些简单的 g c d gcd gcd相关反演题用这个会容易理解容易推导。但是难题(hdu6248)什么的还是要好好构造反演。

那么,如果我们要求 f ( n ) f(n) f(n)的话,用 1 1 1式或 2 2 2式就可以把它转化为求另外一些函数的前缀和与数论分块问题了。。

spoj divcnt1

∑ i = 1 n σ 0 ( i ) \sum_{i=1}^n\sigma_0(i) i=1nσ0(i)。 要求 Θ ( ( n ) ) \Theta(\sqrt(n)) Θ(( n))

∑ i = 1 n ∑ d ∣ i 1 = ∑ d = 1 n ∑ i = 1 n d 1 = ∑ d = 1 n n d \sum_{i=1}^n\sum_{d|i}1=\sum_{d=1}^{n}\sum_{i=1}^{\frac{n}{d}}1=\sum_{d=1}^{n}\frac{n}{d} i=1ndi1=d=1ni=1dn1=d=1ndn
数论分块。和 l u o g u P 3935 luoguP3935 luoguP3935一样。

一个题

∑ i = 1 n ∑ j = 1 m [ g c d ( i , j ) = 1 ] ( n &lt; m ) \sum_{i=1}^n\sum_{j=1}^m[gcd(i,j)=1](n&lt;m) i=1nj=1m[gcd(i,j)=1](n<m)

  • 利用上面的初等变换来解决问题

∑ i = 1 n ∑ j = 1 m [ g c d ( i , j ) = 1 ] ( n &lt; m ) \sum_{i=1}^n\sum_{j=1}^m[gcd(i,j)=1](n&lt;m) i=1nj=1m[gcd(i,j)=1](n<m)

= ∑ i = 1 n ∑ j = 1 m ∑ d ∣ g c d ( i , j ) μ ( d ) =\sum_{i=1}^n\sum_{j=1}^m\sum_{d|gcd(i,j)}\mu(d) =i=1nj=1mdgcd(i,j)μ(d)

= ∑ d = 1 n μ ( d ) ∗ ⌊ n d ⌋ ∗ ⌊ m d ⌋ =\sum_{d=1}^n\mu(d)*\lfloor\frac{n}{d}\rfloor*\lfloor\frac{m}{d}\rfloor =d=1nμ(d)dndm
所以对 ⌊ n d ⌋ ∗ ⌊ m d ⌋ \lfloor\frac{n}{d}\rfloor*\lfloor\frac{m}{d}\rfloor dndm数论分块,计算一个 μ \mu μ的前缀和就好了。

luoguP2522/P3455

∑ i = a b ∑ j = c d [ g c d ( i , j ) = k ] \sum_{i=a}^b\sum_{j=c}^d[gcd(i,j)=k] i=abj=cd[gcd(i,j)=k]

这个计数问题依然有前缀性质,如果我们把 i , j i,j i,j这两维看成二维矩阵的话。就可以用二维前缀和来做。
所以就化为统计 ∑ i = 1 n ∑ j = 1 m [ g c d ( i , j ) = k ] \sum_{i=1}^n\sum_{j=1}^m[gcd(i,j)=k] i=1nj=1m[gcd(i,j)=k]的答案
考虑把它转为上题, = ∑ i = 1 ⌊ n k ⌋ ∑ j = 1 ⌊ m k ⌋ [ g c d ( i , j ) = 1 ] =\sum_{i=1}^{\lfloor\frac{n}{k}\rfloor}\sum_{j=1}^{\lfloor\frac{m}{k}\rfloor}[gcd(i,j)=1] =i=1knj=1km[gcd(i,j)=1]
a   s a m e   p r o b l e m ! a\ same\ problem! a same problem!
O ( n s q r t ( n ) ) O(nsqrt(n)) O(nsqrt(n))

  • 正经反演


f ( k ) = ∑ i = 1 n ∑ j = 1 m [ g c d ( i , j ) = k ] , F ( n ) = ∑ n ∣ t f ( t ) f(k)=\sum_{i=1}^n\sum_{j=1}^m[gcd(i,j)=k],F(n)=\sum_{n|t}f(t) f(k)=i=1nj=1m[gcd(i,j)=k],F(n)=ntf(t)

F ( n ) F(n) F(n)的意义就是含有 n n n这个因子的对数。 F ( x ) = ⌊ a x ⌋ ∗ ⌊ b x ⌋ ( a &lt; b ) F(x)=\lfloor\frac{a}{x}\rfloor*\lfloor\frac{b}{x}\rfloor(a&lt;b) F(x)=xaxb(a<b)

根据莫反第二形式:
f ( k ) = ∑ k ∣ t μ ( t k ) , F ( t ) = ∑ k ∣ t μ ( t k ) ⌊ a t ⌋ ∗ ⌊ b t ⌋ f(k)=\sum_{k|t}\mu(\frac{t}{k}),F(t)=\sum_{k|t}\mu(\frac{t}{k})\lfloor\frac{a}{t}\rfloor*\lfloor\frac{b}{t}\rfloor f(k)=ktμ(kt),F(t)=ktμ(kt)tatb
t k = x \frac{t}{k}=x kt=x f ( k ) = ∑ x = 1 ⌊ a k ⌋ μ ( x ) ⌊ a x k ⌋ ∗ ⌊ b x k ⌋ f(k)=\sum_{x=1}^{\lfloor\frac{a}{k}\rfloor}\mu(x)\lfloor\frac{a}{xk}\rfloor*\lfloor\frac{b}{xk}\rfloor f(k)=x=1kaμ(x)xkaxkb
所以对 ⌊ a x k ⌋ ∗ ⌊ b x k ⌋ \lfloor\frac{a}{xk}\rfloor*\lfloor\frac{b}{xk}\rfloor xkaxkb数论分块就行了。

一个题

给定 n , m n,m n,m,求 ∑ i = 1 n ∑ j = 1 m i j [ g c d ( i , j ) = = k ] ( n &lt; m ) \sum_{i=1}^n\sum_{j=1}^mij[gcd(i,j)==k](n&lt;m) i=1nj=1mij[gcd(i,j)==k](n<m)

  • 用初等变换解决问题

和上面一样,我们还是考虑把是 k k k的整倍数的那些 i , j i,j i,j同时除以 k k k
= ∑ i = 1 ⌊ n k ⌋ ∑ j = 1 ⌊ m k ⌋ i j [ g c d ( i , j ) = = 1 ] k 2 =\sum_{i=1}^{\lfloor\frac{n}{k}\rfloor}\sum_{j=1}^{\lfloor\frac{m}{k}\rfloor}ij[gcd(i,j)==1]k^2 =i=1knj=1kmij[gcd(i,j)==1]k2

= ∑ i = 1 ⌊ n k ⌋ ∑ j = 1 ⌊ m k ⌋ i j ∑ d ∣ g c d ( i , j ) μ ( d ) k 2 =\sum_{i=1}^{\lfloor\frac{n}{k}\rfloor}\sum_{j=1}^{\lfloor\frac{m}{k}\rfloor}ij\sum_{d|gcd(i,j)}\mu(d)k^2 =i=1knj=1kmijdgcd(i,j)μ(d)k2

= k 2 ∑ d = 1 ⌊ n k ⌋ d 2 μ ( d ) ∑ i = 1 ⌊ n k d ⌋ i ∑ j = 1 ⌊ m k d ⌋ j =k^2\sum_{d=1}^{\lfloor\frac{n}{k}\rfloor}d^2\mu(d)\sum_{i=1}^{\lfloor\frac{n}{kd}\rfloor}i\sum_{j=1}^{\lfloor\frac{m}{kd}\rfloor}j =k2d=1knd2μ(d)i=1kdnij=1kdmj

我们发现可以预处理 ∑ d = 1 ⌊ n k ⌋ d 2 μ ( d ) \sum_{d=1}^{\lfloor\frac{n}{k}\rfloor}d^2\mu(d) d=1knd2μ(d)的前缀和,对后面那一坨数论分块算等差数列平方,最后 a n s ∗ = k 2 ans*=k^2 ans=k2就好了。(把 n k \frac{n}{k} kn视作 n n n m k \frac{m}{k} km视作 m m m,就是有两个限制的数论分块了。)
O ( n + s q r t ( n ) ) O(n+sqrt(n)) O(n+sqrt(n))

  • 正经反演
一个题

∑ i = 1 n ∑ j = 1 m l c m ( i , j ) \sum_{i=1}^n\sum_{j=1}^mlcm(i,j) i=1nj=1mlcm(i,j)

因为, l c m ( i , j ) = i ∗ j g c d ( i , j ) lcm(i,j)=\frac{i*j}{gcd(i,j)} lcm(i,j)=gcd(i,j)ij

仍然是老套路,枚举 g c d ( i , j ) gcd(i,j) gcd(i,j)
= ∑ d = 1 n ∑ i = 1 n ∑ j = 1 m i ∗ j d ∗ [ g c d ( i , j ) = d ] =\sum_{d=1}^{n}\sum_{i=1}^{n}\sum_{j=1}^{m}\frac{i*j}{d}*[gcd(i,j)=d] =d=1ni=1nj=1mdij[gcd(i,j)=d]
同时除以 d d d
= ∑ d = 1 n ∑ i = 1 ⌊ n d ⌋ ∑ j = 1 ⌊ m d ⌋ i ∗ j ∗ d ∗ [ g c d ( i , j ) = 1 ] =\sum_{d=1}^{n}\sum_{i=1}^{\lfloor\frac{n}{d}\rfloor}\sum_{j=1}^{\lfloor\frac{m}{d}\rfloor}i*j*d*[gcd(i,j)=1] =d=1ni=1dnj=1dmijd[gcd(i,j)=1]
= ∑ d = 1 n ∑ i = 1 ⌊ n d ⌋ ∑ j = 1 ⌊ m d ⌋ i ∗ j ∗ d ∑ k ∣ g c d ( i , j ) μ ( k ) =\sum_{d=1}^{n}\sum_{i=1}^{\lfloor\frac{n}{d}\rfloor}\sum_{j=1}^{\lfloor\frac{m}{d}\rfloor}i*j*d\sum_{k|gcd(i,j)}\mu(k) =d=1ni=1dnj=1dmijdkgcd(i,j)μ(k)
枚举 k k k
= ∑ d = 1 n d ∑ k = 1 ⌊ n d ⌋ μ ( k ) ∗ k 2 ∑ i = 1 ⌊ n d k ⌋ i ∑ j = 1 ⌊ m d k ⌋ j =\sum_{d=1}^{n}d\sum_{k=1}^{\lfloor\frac{n}{d}\rfloor}\mu(k)*k^2\sum_{i=1}^{\lfloor\frac{n}{dk}\rfloor}i\sum_{j=1}^{\lfloor\frac{m}{dk}\rfloor}j =d=1ndk=1dnμ(k)k2i=1dknij=1dkmj

发现 ⌊ n d ⌋ \lfloor\frac{n}{d}\rfloor dn是可以数论分块的,在这个数论分块里面再套一个对于 ⌊ n k d ⌋ ⌊ m d k ⌋ \lfloor\frac{n}{kd}\rfloor\lfloor\frac{m}{dk}\rfloor kdndkm的数论分块就好了。 这样做的复杂度是 O ( n ) O(n) O(n)。 这题通过把后面的等差数列构造新函数可以优化至 O ( s q r t ( n ) ) O(sqrt(n)) O(sqrt(n))啦。(待update)

luoguP3327

∑ i = 1 n ∑ j = 1 m d ( i j ) \sum_{i=1}^n\sum_{j=1}^md(ij) i=1nj=1md(ij),这里 d ( i j ) d(ij) d(ij)表示 i j ij ij的约数个数

首先: d ( i j ) = ∑ x ∣ i ∑ y ∣ j [ g c d ( x , y ) = = 1 ] d(ij)=\sum_{x|i}\sum_{y|j}[gcd(x,y)==1] d(ij)=xiyj[gcd(x,y)==1]

证明就考虑 i , j i,j i,j的一个质因子 p p p,假设它在 i i i中的次数是 e i e_i ei,在 j j j中的次数是 e j e_j ej。那么它在 i j ij ij中的可能次数是 e i + e j + 1 e_i+e_j+1 ei+ej+1。而右边我们保证了 x , y x,y x,y互质,意思就是 p p p不可在 i , j i,j i,j中同时存在。假设 p p p i i i中的次数为 0 0 0,在 j j j中就有 e j + 1 e_j+1 ej+1种选法。 e j = 0 e_j=0 ej=0也同理。再减去重复的 e i = e j = 0 e_i=e_j=0 ei=ej=0的情况,就是 e i + e j + 1 e_i+e_j+1 ei+ej+1

推导还挺妙的啊?

  • 利用初等变换

∑ i = 1 n ∑ j = 1 m d ( i j ) ( n &lt; m ) \sum_{i=1}^n\sum_{j=1}^md(ij)(n&lt;m) i=1nj=1md(ij)(n<m)

= ∑ i = 1 n ∑ j = 1 m ∑ x ∣ i ∑ y ∣ j [ g c d ( x , y ) = 1 ] =\sum_{i=1}^n\sum_{j=1}^m\sum_{x|i}\sum_{y|j}[gcd(x,y)=1] =i=1nj=1mxiyj[gcd(x,y)=1]

= ∑ x = 1 n ∑ y = 1 m [ g c d ( x , y ) = 1 ] ⌊ n x ⌋ ⌊ m y ⌋ =\sum_{x=1}^n\sum_{y=1}^m[gcd(x,y)=1]\lfloor\frac{n}{x}\rfloor\lfloor\frac{m}{y}\rfloor =x=1ny=1m[gcd(x,y)=1]xnym

= ∑ x = 1 n ∑ y = 1 m ∑ d ∣ g c d ( x , y ) μ ( d ) ⌊ n x ⌋ ⌊ m y ⌋ ( n &lt; m ) =\sum_{x=1}^n\sum_{y=1}^m\sum_{d|gcd(x,y)}\mu(d)\lfloor\frac{n}{x}\rfloor\lfloor\frac{m}{y}\rfloor(n&lt;m) =x=1ny=1mdgcd(x,y)μ(d)xnym(n<m)

= ∑ d = 1 n μ ( d ) ∑ x = 1 ⌊ n d ⌋ ∑ y = 1 ⌊ m d ⌋ ⌊ n d x ⌋ ⌊ m d y ⌋ =\sum_{d=1}^n\mu(d)\sum_{x=1}^{\lfloor\frac{n}{d}\rfloor}\sum_{y=1}^{\lfloor\frac{m}{d}\rfloor}\lfloor\frac{n}{dx}\rfloor\lfloor\frac{m}{dy}\rfloor =d=1nμ(d)x=1dny=1dmdxndym

= ∑ d = 1 n μ ( d ) ∑ x = 1 ⌊ n d ⌋ ⌊ n d x ⌋ ∑ y = 1 ⌊ m d ⌋ ⌊ m d y ⌋ =\sum_{d=1}^n\mu(d)\sum_{x=1}^{\lfloor\frac{n}{d}\rfloor}\lfloor\frac{n}{dx}\rfloor\sum_{y=1}^{\lfloor\frac{m}{d}\rfloor}\lfloor\frac{m}{dy}\rfloor =d=1nμ(d)x=1dndxny=1dmdym

这个东西居然是可以数论分块的!一开始我惊了。我们用数论分块保证 d d d [ L , R ] [L,R] [L,R]区间上保持 ⌊ n d ⌋ \lfloor\frac{n}{d}\rfloor dn ⌊ m d ⌋ \lfloor\frac{m}{d}\rfloor dm一致。然后,我们惊讶地发现: ∑ y = 1 ⌊ m d ⌋ ⌊ m d y ⌋ \sum_{y=1}^{\lfloor\frac{m}{d}\rfloor}\lfloor\frac{m}{dy}\rfloor y=1dmdym是什么?它就是一个数论分块的子问题!!!!就是 [ 1 , ⌊ m d ⌋ ] [1,\lfloor\frac{m}{d}\rfloor] [1,dm]这个前缀上的 ⌊ m i ⌋ \lfloor\frac{m}{i}\rfloor im的和!! 所以,我们 O ( n ) O(n) O(n)筛出 μ \mu μ,算出其前缀和。然后 O ( n s q r t ( n ) ) O(nsqrt(n)) O(nsqrt(n))预处理出 g [ i ] g[i] g[i]表示 [ 1 , i ] [1,i] [1,i]这个前缀区间的子问题答案。我们再对外面的 d d d进行数论分块,可以 O ( 1 ) O(1) O(1)算出解。复杂度 O ( ( n + T ) s q r t ( n ) ) O((n+T)sqrt(n)) O((n+T)sqrt(n))

  • 正经莫反

∑ i = 1 n ∑ j = 1 m d ( i j ) ( n &lt; m ) \sum_{i=1}^n\sum_{j=1}^md(ij)(n&lt;m) i=1nj=1md(ij)(n<m)

= ∑ i = 1 n ∑ j = 1 m ∑ x ∣ i ∑ y ∣ j [ g c d ( x , y ) = 1 ] =\sum_{i=1}^n\sum_{j=1}^m\sum_{x|i}\sum_{y|j}[gcd(x,y)=1] =i=1nj=1mxiyj[gcd(x,y)=1]

= ∑ x = 1 n ∑ y = 1 m [ g c d ( x , y ) = 1 ] ⌊ n x ⌋ ⌊ m y ⌋ =\sum_{x=1}^n\sum_{y=1}^m[gcd(x,y)=1]\lfloor\frac{n}{x}\rfloor\lfloor\frac{m}{y}\rfloor =x=1ny=1m[gcd(x,y)=1]xnym

我们设 f ( k ) = ∑ x = 1 n ∑ y = 1 m [ g c d ( x , y ) = k ] ⌊ n x ⌋ ⌊ m y ⌋ f(k)=\sum_{x=1}^n\sum_{y=1}^m[gcd(x,y)=k]\lfloor\frac{n}{x}\rfloor\lfloor\frac{m}{y}\rfloor f(k)=x=1ny=1m[gcd(x,y)=k]xnym,所以答案就是 f ( 1 ) f(1) f(1)对吧。

又设 F ( n ) = ∑ n ∣ d f ( d ) F(n)=\sum_{n|d}f(d) F(n)=ndf(d),根据莫反二 f ( n ) = ∑ n ∣ d μ ( n d ) F ( d ) f(n)=\sum_{n|d}\mu(\frac{n}{d})F(d) f(n)=ndμ(dn)F(d)。我们需要快速得出 F ( n ) F(n) F(n)

F ( n ) F(n) F(n)

= ∑ n ∣ d f ( d ) =\sum_{n|d}f(d) =ndf(d)

= ∑ x = 1 n ∑ y = 1 m [ d ∣ g c d ( x , y ) ] ⌊ n x ⌋ ⌊ m y ⌋ =\sum_{x=1}^n\sum_{y=1}^m[d|gcd(x,y)]\lfloor\frac{n}{x}\rfloor\lfloor\frac{m}{y}\rfloor =x=1ny=1m[dgcd(x,y)]xnym

= ∑ x = 1 ⌊ n d ⌋ ∑ y = 1 ⌊ m d ⌋ ⌊ n d x ⌋ ⌊ m d y ⌋ =\sum_{x=1}^{\lfloor\frac{n}{d}\rfloor}\sum_{y=1}^{\lfloor\frac{m} {d}\rfloor}\lfloor\frac{n}{dx}\rfloor\lfloor\frac{m}{dy}\rfloor =x=1dny=1dmdxndym

发现这玩意就是两个 [ 1 , i ] [1,i] [1,i]的数论分块入门题拼起来,可以 O ( n s q r t ( n ) ) O(nsqrt(n)) O(nsqrt(n))预处理。

再看要求的答案式: f ( 1 ) = ∑ d = 1 n μ ( d ) F ( d ) f(1)=\sum_{d=1}^n\mu(d)F(d) f(1)=d=1nμ(d)F(d),展开 F ( d ) F(d) F(d)后发现可以数论分块。

(目前感觉初等变换和正经莫反区别不大。。。

luoguP3768

给定 n , p n,p n,p,求 ( ∑ i = 1 n ∑ j = 1 n i j g c d ( i , j ) ) ( m o d   p ) (\sum_{i=1}^n\sum_{j=1}^nijgcd(i,j))(mod\ p) (i=1nj=1nijgcd(i,j))(mod p)

  • 60pts

根据之前那个小结论,即求 ∑ i = 1 n ∑ j = 1 n i j ∑ d ∣ g c d ( i , j ) ϕ ( d ) ( m o d   p ) \sum_{i=1}^n\sum_{j=1}^nij\sum_{d|gcd(i,j)}\phi(d)(mod\ p) i=1nj=1nijdgcd(i,j)ϕ(d)(mod p)

= ∑ d = 1 n ϕ ( d ) ∑ i = 1 ⌊ n d ⌋ i d ∑ i = 1 ⌊ n d ⌋ j d =\sum_{d=1}^n\phi(d)\sum_{i=1}^{\lfloor\frac{n}{d}\rfloor}id\sum_{i=1}^{\lfloor\frac{n}{d}\rfloor}jd =d=1nϕ(d)i=1dnidi=1dnjd

= ∑ d = 1 n ϕ ( d ) d 2 ∑ i = 1 ⌊ n d ⌋ i ∑ i = 1 ⌊ n d ⌋ j =\sum_{d=1}^n\phi(d)d^2\sum_{i=1}^{\lfloor\frac{n}{d}\rfloor}i\sum_{i=1}^{\lfloor\frac{n}{d}\rfloor}j =d=1nϕ(d)d2i=1dnii=1dnj

= ∑ d = 1 n ϕ ( d ) d 2 ( ∑ i = 1 ⌊ n d ⌋ i ) 2 =\sum_{d=1}^n\phi(d)d^2(\sum_{i=1}^{\lfloor\frac{n}{d}\rfloor}i)^2 =d=1nϕ(d)d2(i=1dni)2

预处理 ϕ ( d ) d 2 \phi(d)d^2 ϕ(d)d2的前缀和,数论分块乘个等差数列和的平方就好了。

O ( n + s q r t ( n ) ) O(n+sqrt(n)) O(n+sqrt(n)),线性筛搞出 ϕ \phi ϕ是瓶颈。

  • 100pts

发现 ∑ i = 1 d ϕ ( d ) \sum_{i=1}^d\phi(d) i=1dϕ(d)是一个积性函数前缀和?杜教筛一下就好了嘛?
(等待学完杜教筛之后再想想吧,现在就咕咕咕

luoguP5221

这题有很多做法,我考场现场想了一个不用莫反不用欧拉函数的做法。就硬是从基本原理出发推导出来了。这里谈谈莫反做法。

要求 ∏ i = 1 n ∏ j = 1 n l c m ( i , j ) g c d ( i , j ) ( m o d   P ) \prod_{i=1}^n\prod_{j=1}^n{\frac{lcm(i,j)}{gcd(i,j)}}(mod\ P) i=1nj=1ngcd(i,j)lcm(i,j)(mod P) P P P是个质数。

= ∏ i = 1 n ∏ j = 1 n i j g c d 2 ( i , j ) ( m o d   P ) =\prod_{i=1}^n\prod_{j=1}^n{\frac{ij}{gcd^2(i,j)}}(mod\ P) =i=1nj=1ngcd2(i,j)ij(mod P)

= ( n ! ) 2 ( ∏ i = 1 n ∏ j = 1 n g c d ( i , j ) ) 2 =\frac{(n!)^2}{(\prod_{i=1}^n\prod_{j=1}^ngcd(i,j))^2} =(i=1nj=1ngcd(i,j))2(n!)2

显然只需要关心 ∏ i = 1 n ∏ j = 1 n g c d ( i , j ) \prod_{i=1}^n\prod_{j=1}^ngcd(i,j) i=1nj=1ngcd(i,j)就好了。

既然是莫反,我们就一定要确定出来一个 g c d gcd gcd的值,枚举这个值为 d d d

= ∏ d = 1 n d ∑ i = 1 n ∑ j = 1 n [ g c d ( i , j ) = d ] =\prod_{d=1}^nd^{\sum_{i=1}^n\sum_{j=1}^n[gcd(i,j)=d]} =d=1ndi=1nj=1n[gcd(i,j)=d] 这里要对指数 m o d   ( p − 1 ) mod\ (p-1) mod (p1)了,(希望不要求逆元啊否则就要CRT合并了QAQ)。

= ∏ d = 1 n d ∑ i = 1 ⌊ n d ⌋ ∑ j = 1 ⌊ n d ⌋ [ g c d ( i , j ) = 1 ] =\prod_{d=1}^nd^{\sum_{i=1}^{\lfloor\frac{n}{d}\rfloor}\sum_{j=1}^{\lfloor\frac{n}{d}\rfloor}[gcd(i,j)=1]} =d=1ndi=1dnj=1dn[gcd(i,j)=1]

= ∏ d = 1 n d ∑ i = 1 ⌊ n d ⌋ ∑ j = 1 ⌊ n d ⌋ ∑ k ∣ g c d ( i , j ) μ ( k ) =\prod_{d=1}^nd^{\sum_{i=1}^{\lfloor\frac{n}{d}\rfloor}\sum_{j=1}^{\lfloor\frac{n}{d}\rfloor}\sum_{k|gcd(i,j)}\mu(k)} =d=1ndi=1dnj=1dnkgcd(i,j)μ(k)

= ∏ d = 1 n d ∑ k = 1 ⌊ n d ⌋ μ ( k ) ( ⌊ n d k ⌋ ) 2 =\prod_{d=1}^nd^{\sum_{k=1}^{\lfloor\frac{n}{d}\rfloor}\mu(k)(\lfloor\frac{n}{dk}\rfloor)^2} =d=1ndk=1dnμ(k)(dkn)2

现在,一种方案是枚举 d d d,然后对里面裸数论分块。可以发现指数里面的上界是 ⌊ n d ⌋ \lfloor\frac{n}{d}\rfloor dn,显然可以对 d d d再分块一次。这样二次分块 O ( n ) O(n) O(n)。但是由于卡空间的缘故,不能再开一个阶乘数组。所以要维护两个指针移动地维护阶乘。


从数论分块到狄利克雷卷积

数论分块

对于计算 ∑ i = 1 n n i \sum_{i=1}^n{\frac{n}{i}} i=1nin,发现不同的 n i \frac{n}{i} in最多只有 Θ ( s q r t ( n ) ) \Theta(sqrt(n)) Θ(sqrt(n))个。

小证明:对于 i &lt; s q r t ( n ) i&lt;sqrt(n) i<sqrt(n),不同的值最多只有 Θ ( s q r t ( n ) ) \Theta(sqrt(n)) Θ(sqrt(n))个啦。对于 i &gt; = s q r t ( n ) i&gt;=sqrt(n) i>=sqrt(n),除一下的范围就限定在了 [ 1 , s q r t ( n ) ] [1,sqrt(n)] [1,sqrt(n)]之间。得证。

结论: 已 知 p , n ( p &lt; = n ) 已知p,n(p&lt;=n) p,n(p<=n),那么使得 ⌊ n i ⌋ = ⌊ n p ⌋ \lfloor\frac{n}{i}\rfloor=\lfloor\frac{n}{p}\rfloor in=pn的最大的正整数 i i i n ⌊ n p ⌋ \frac{n}{\lfloor\frac{n}{p}\rfloor} pnn

所以处理每一块的 [ l , r ] [l,r] [l,r]即可。

最普通的数论分块:

LL solve(LL n) {// 单限制的数论分块
    for (LL L = 1, R; L <= n; L = R + 1) {
        R = n / (n / L);
        calculate();//[L,R] have the same answers.
    }
}

两个限制的数论分块:

LL solve(LL n, LL m) {// 多限制的数论分块
    LL upp = min(n, m);
    for (LL L = 1, R; L <= upp; L = R + 1) {
        R = min(n / (n / l), m / (m / l));
        calculate();
    }
}

可以分块套分块。

两个积性函数的狄利克雷卷积也是一个积性函数。

f , g f,g f,g为积性函数的话:
h ( n ) = ∑ d ∣ n f ( d ) ∗ g ( n d ) h(n)=\sum_{d|n}f(d)*g(\frac{n}{d}) h(n)=dnf(d)g(dn)也是一个积性函数。
对于 n i \frac{n}{i} in这样的形式,我们如果把它数论分块之后,就要求另外一个函数的前缀和。

常见的狄利克雷卷积结论:

σ 0 = 1 ∗ 1 \sigma_0=1*1 σ0=11
证明:直接按照狄利克雷卷积的定义展开就好了。
1 ( n ) ∗ 1 ( n ) = ∑ d ∣ n 1 ( d ) ∗ 1 ( n d ) = ∑ d ∣ n 1 = σ 0 ( n ) 1(n)*1(n)=\sum_{d|n}1(d)*1(\frac{n}{d})=\sum_{d|n}1=\sigma_0(n) 1(n)1(n)=dn1(d)1(dn)=dn1=σ0(n)

σ 1 = I ∗ 1 \sigma_1=I*1 σ1=I1
证明:化式子过程
I ( n ) ∗ 1 ( n ) = ∑ d ∣ n I ( d ) ∗ 1 ( n d ) = ∑ d ∣ n d = σ 1 ( n ) I(n)*1(n)=\sum_{d|n}I(d)*1(\frac{n}{d})=\sum_{d|n}d=\sigma_1(n) I(n)1(n)=dnI(d)1(dn)=dnd=σ1(n)

I = ϕ ∗ 1 I=\phi*1 I=ϕ1
证明:化式子
ϕ ( n ) ∗ 1 ( n ) = ∑ d ∣ n ϕ ( d ) ∗ 1 ( n d ) = ∑ d ∣ n ϕ ( d ) = n = I ( n ) \phi(n)*1(n)=\sum_{d|n}\phi(d)*1(\frac{n}{d})=\sum_{d|n}\phi(d)=n=I(n) ϕ(n)1(n)=dnϕ(d)1(dn)=dnϕ(d)=n=I(n)

小结论: ∑ d ∣ n ϕ ( d ) = n \sum_{d|n}\phi(d)=n dnϕ(d)=n

证明(引):
任何一个≤T的正整数,都与T有一个最大公约数R,R也是T的因数,R×S=T。通常会有几个整数各自与T的最大公约数一致,那么相同的有多少呢?与T的最大公约数是R的整数,必然是R的倍数1~S倍。与S互质的数乘以R,符合这个条件;与S互约的数乘以R,不符合条件,因为最大公约数已经不是R。因此,与T最大公约数是R的整数的个数,就是与S互质的整数的个数,就是S的欧拉函数。

整数与T的最大公约数唯一,每个最大公约数的个数之和等于T(存在性与唯一性的统一)。因为每个最大公约数R的个数,等于T/R(即S)的欧拉函数;最大公约数S的个数,也等于R的欧拉函数。最大公约数就是T所有的因数,两个乘积为T的因数,作为最大公约数时的个数,就等于相乘因数的欧拉函数。1和T也不例外。这样,所有最大公约数的个数之和,等于所有因数的欧拉函数之和,等于T这个数本身。

(简单来说,就是建立了欧拉函数与最大公约数的一一对应关系,因为每个T的因数作为最大公约数的次数之和肯定等于T,而这个次数恰好是另一半的欧拉函数)。

ϵ = μ ∗ 1 \epsilon=\mu*1 ϵ=μ1
证明:考虑右边,由于 1 1 1这个东西始终是 1 1 1,所以右边卷起来就是 n n n的所有因子的 μ \mu μ和。根据前面的定理,自然等于 ϵ ( n ) 。 \epsilon(n)。 ϵ(n)

f ∗ ϵ = f f*\epsilon=f fϵ=f
证明:考虑左边,只有当 d = n d=n d=n的时候才会有 ϵ ( n d ) = 1 \epsilon(\frac{n}{d})=1 ϵ(dn)=1,只有这一项才会有贡献。

狄利克雷卷积有交换律,对加法的分配律,结合律
狄里克雷卷积的逆?构造
  • 1
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值