狄利克雷卷积 与 莫比乌斯反演

定义: f(n) f ( n ) , g(n) g ( n ) 是两个数论函数(定义域均为正整数)

定义卷积运算” × × ”: (f×g)(n)=ij=nf(i)g(j)=n%d=0f(d)g(nd) ( f × g ) ( n ) = ∑ i ⋅ j = n f ( i ) ⋅ g ( j ) = ∑ n % d = 0 f ( d ) ⋅ g ( n d )

交换律:
(f×g)(n)=(g×f)(n) ( f × g ) ( n ) = ( g × f ) ( n )

结合律:
((f×g)×h)(n)=(f×(g×h))(n) ( ( f × g ) × h ) ( n ) = ( f × ( g × h ) ) ( n )

单位元:
设: e(n) e ( n ) 为卷积运算单位元
那么有: (f×e)(n)=f(n) ( f × e ) ( n ) = f ( n )
n%d=0f(d)e(nd)=f(n) ∑ n % d = 0 f ( d ) ⋅ e ( n d ) = f ( n )
所以: e(nd)={1(d=n)0(dn) e ( n d ) = { 1 ( d = n ) 0 ( d ≠ n )

即: e(n)={1(n=1)0(n1) e ( n ) = { 1 ( n = 1 ) 0 ( n ≠ 1 )

定义函数: l(n)=1 l ( n ) = 1

那么: f(n)=n%d=0g(d) f ( n ) = ∑ n % d = 0 g ( d ) 可以写成: f(n)=(g×l)(n) f ( n ) = ( g × l ) ( n )

定义: 莫比乌斯函数 μ(n) μ ( n ) 为函数 l(n) l ( n ) 的逆元

那么: (μ×l)(n)=e(n) ( μ × l ) ( n ) = e ( n )
得: n%d=0μ(n)=e(n) ∑ n % d = 0 μ ( n ) = e ( n )

那么:
g(n)=(f×μ)(n)=n%d=0μ(nd)f(d)(14)(15) (14) g ( n ) = ( f × μ ) ( n ) (15) = ∑ n % d = 0 μ ( n d ) ⋅ f ( d )

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值