动态规划回文子串

647. 回文子串

方法:双指针

回文子串有长度为奇数和偶数两种,extend(s, i, i, n); extend(s, i, i + 1, n);就分别对应长度为奇数和偶数的情况

class Solution {
private:
    int extend(const string& s, int i, int j, int n) {
        int res = 0;
        while (i >= 0 && j < n && s[i] == s[j]) {
            ++j;
            --i;
            ++res;
        }
        return res;
    }
public:
    int countSubstrings(string s) {
        int n = s.size(), ans = 0;
        for (int i = 0; i < n; ++i) {
            ans += extend(s, i, i, n);
            ans += extend(s, i, i + 1, n);
        }
        return ans;
    }
};

$时间复杂度O(),空间复杂度O(n);

方法:dp

状态表示:以i为起始坐标到j为终止坐标的子字符串是否为回文的字符串的集合

属性:是与否

状态计算:当s[i] == s[j]时,分成两种情况。一种是j - i <= 1例如:aa与a都是回文字符串,另一种情况是j-i>1就得判断dp[i+1][j-1]是不是回文了。

状态依赖dp[i+1][j-1]这种状态,所以i的遍历就得倒过来,这样才能确保dp[i+1][j-1]已经判断是否为回文。

class Solution {
public:
    int countSubstrings(string s) {
        int n = s.size();
        vector<vector<bool>> dp(n, vector<bool> (n, false));
        int res = 0;
        for (int i = n - 1; i >= 0; --i) 
            for (int j = i; j < n; ++j) {
                if (s[i] == s[j] && (j - i <= 1 || dp[i+1][j-1])) {
                    ++res;
                    dp[i][j] = true;
                }
            }
        return res;
    }
};

$时间复杂度O(),空间复杂度O();

516. 最长回文子序列

方法:dp

状态表示:以i为起始坐标到j为终止坐标的子字符串最长回文的字符串的长度

属性::长度

预处理长度为1的回文子序列

状态计算:当s[i] == s[j]时,dp[i][j] == dp[i+1][j-1] + 2(为一的情况已经预处理)

不相同时则取dp[i+1][j],与dp[i][j-1]中的大值;

与上一题一样遍历顺序是从下到上从左到右

class Solution {
    #define maxn 1010
    int dp[maxn][maxn];
public:
    int longestPalindromeSubseq(string s) {
        int n = s.size();
        for (int i = 0; i < n; ++i) dp[i][i] = 1;
        for (int i = n - 1; i >= 0; --i) 
            for (int j = i + 1; j < n; ++j) {
                if (s[i] == s[j]) dp[i][j] = dp[i+1][j-1] + 2;
                else dp[i][j] = max(dp[i+1][j], dp[i][j-1]);
            }
        return dp[0][n-1];
    }
};

$时间复杂度O(),空间复杂度O();

最长回文子串是指在一个字符串中最长的回文子序列。回文是指正着读和倒着读都一样的字符串。动态规划是解决最长回文子串问题的一种常用方法。动态规划的思想是将问题分解成子问题,通过求解子问题的最优解来得到原问题的最优解。在最长回文子串问题中,我们可以使用一个二维数组dp[i][j]来表示从i到j的子串是否为回文子串。如果dp[i][j]为true,则表示从i到j的子串回文子串,否则不是。我们可以通过以下步骤来求解最长回文子串: 1. 初始化dp数组,将所有dp[i][i]都设置为true,表示单个字符是回文子串。 2. 遍历字符串s,从长度为2的子串开始,依次判断每个子串是否为回文子串。如果是,则将dp[i][j]设置为true。 3. 在遍历的过程中,记录最长回文子串的长度和起始位置。 4. 最后,通过起始位置和长度来截取最长回文子串。 下面是一个示例代码,可以帮助你更好地理解动态规划求解最长回文子串的过程: class Solution { public: string longestPalindrome(string s) { int len=s.size(); if(len<2) return s; bool dp[len][len];//布尔型,dp[i][j]表示从i到j是否构成回文 int max_count=1;//最大字串的长度 int start=0;//最长字串的起始位置 for(int j=0;j<len;j++) { for(int i=0;i<j;i++) { if(s[i]!=s[j]) dp[i][j]=false; else if((j-i)<3)//(j-1)-(i+1)+1<2表示dp[i][j]的最大字串长度为1 dp[i][j]=true; else { dp[i][j]=dp[i+1][j-1]; } if((j-i+1)>max_count&&dp[i][j]) { max_count=j-i+1; start=i; } } } return s.substr(start,max_count);//截取字符串 } };
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值