A - 掌握魔法の东东 II
1.题目
从瑞神家打牌回来后,东东痛定思痛,决定苦练牌技,终成赌神!
东东有 A × B 张扑克牌。每张扑克牌有一个大小(整数,记为a,范围区间是 0 到 A - 1)和一个花色(整数,记为b,范围区间是 0 到 B - 1。
扑克牌是互异的,也就是独一无二的,也就是说没有两张牌大小和花色都相同。
“一手牌”的意思是你手里有5张不同的牌,这 5 张牌没有谁在前谁在后的顺序之分,它们可以形成一个牌型。 我们定义了 9 种牌型,如下是 9 种牌型的规则,我们用“低序号优先”来匹配牌型,即这“一手牌”从上到下满足的第一个牌型规则就是它的“牌型编号”(一个整数,属于1到9):
同花顺: 同时满足规则 5 和规则 4.
炸弹 : 5张牌其中有4张牌的大小相等.
三带二 : 5张牌其中有3张牌的大小相等,且另外2张牌的大小也相等.
同花 : 5张牌都是相同花色的.
顺子 : 5张牌的大小形如 x, x + 1, x + 2, x + 3, x + 4
三条: 5张牌其中有3张牌的大小相等.
两对: 5张牌其中有2张牌的大小相等,且另外3张牌中2张牌的大小相等.
一对: 5张牌其中有2张牌的大小相等.
要不起: 这手牌不满足上述的牌型中任意一个.
现在, 东东从A × B 张扑克牌中拿走了 2 张牌!分别是 (a1, b1) 和 (a2, b2). (其中a表示大小,b表示花色)
现在要从剩下的扑克牌中再随机拿出 3 张!组成一手牌!!
其实东东除了会打代码,他业余还是一个魔法师,现在他要预言他的未来的可能性,即他将拿到的“一手牌”的可能性,我们用一个“牌型编号(一个整数,属于1到9)”来表示这手牌的牌型,那么他的未来有 9 种可能,但每种可能的方案数不一样。
现在,东东的阿戈摩托之眼没了,你需要帮他算一算 9 种牌型中,每种牌型的方案数。
input
第 1 行包含了整数 A 和 B (5 ≤ A ≤ 25, 1 ≤ B ≤ 4).
第 2 行包含了整数 a1, b1, a2, b2 (0 ≤ a1, a2 ≤ A - 1, 0 ≤ b1, b2 ≤ B - 1, (a1, b1) ≠ (a2, b2)).
output
输出一行,这行有 9 个整数,每个整数代表了 9 种牌型的方案数(按牌型编号从小到大的顺序)
examples
Input
5 2
1 0 3 1
Output
0 0 0 0 8 0 12 36 0
Input
25 4
0 0 24 3
Output
0 2 18 0 0 644 1656 36432 113344
2.解题思路
根据数据范围知道最多有100张牌,从中选取三张牌,直接循环三次复杂度是可以接受的。
用一维数组存储全部的牌。在牌的结构体中定义整形vis,用于表示本牌是否被摸过。循环三次,注意每下一次都循环开始节点是本层循环的下一张牌,避免重复。将摸到的五张牌存到一个数组并从小到大排序。如果是炸弹,那么要么是数组的前四个元素相等,要么是数组的后四个元素相等。其余的牌型可以仿照炸弹根据数组元素判断出。追注意第九种牌型要不起:在前八种牌型中,如果出现任何一种牌型,那么就标记为flag为一。如果最终flag仍然等于零,那就是第九种牌型。
数组存储每种牌型的方案数,最终输出。
3.c++代码
#include<iostream>
#include<stdio.h>
#include<stdlib.h>
#include<algorithm>
using namespace std;
//暴力破解
struct poker
{
int a;//数字
int b;//花色
int vis;//表示该牌是否已被选
}thisP[105];//序号从0开始
int num[10]={0};//方案数
int main()
{
bool shunzi(int a,int b,int c,int d,int e);
bool zhadan(int a,int b,int c,int d,int e);
bool sandaier(int a,int b,int c,int d,int e);
bool santiao(int a,int b,int c,int d,int e);
bool liangdui(int a,int b,int c,int d,int e);
bool yidui(int a,int b,int c,int d,int e);
int A,B,flag,a1,b1,a2,b2;
//scanf("%d%d",&A,&B);
cin>>A>>B;
cin>>a1>>b1>>a2>>b2;
//poker p1,p2;p1.a=a1,p1.b=b1;p2.a=a2,p2.b=b2;
//将所有牌放在一维数组中
for(int j=0;j<B;j++)
for(int i=0;i<A;i++)
{
thisP[A*j+i].a=i;thisP[A*j+i].b=j;
if((i==a1&&j==b1)||(i==a2&&j==b2))thisP[A*j+i].vis=1;
else thisP[A*j+i].vis=0;
}
//取的三个牌的对应下标分别为ijk
for(int i=0;i<A*B;i++)
{
if(thisP[i].vis==1)continue;//使选的牌不是同一张牌
thisP[i].vis==1;
for(int j=i+1;j<A*B;j++)
{
if(thisP[j].vis==1)continue;
thisP[j].vis=1;
for(int k=j+1;k<A*B;k++)
{
if(thisP[k].vis==1)continue;
thisP[k].vis=1;
flag=0;//判断这五张牌是否是要不起
//同花顺
if(b1==b2&&b2==thisP[i].b&&thisP[i].b==thisP[j].b&&thisP[j].b==thisP[k].b
&&shunzi(thisP[i].a,thisP[j].a,thisP[k].a,a1,a2))
{num[0]++;flag=1;}
//炸弹
else if(zhadan(thisP[i].a,thisP[j].a,thisP[k].a,a1,a2))
{num[1]++;flag=1;}
//三带二
else if(sandaier(thisP[i].a,thisP[j].a,thisP[k].a,a1,a2))
{num[2]++;flag=1;}
//同花
else if((b1==b2&&b1==thisP[i].b&&b1==thisP[j].b&&b1==thisP[k].b)
&&(!shunzi(thisP[i].a,thisP[j].a,thisP[k].a,a1,a2)))
{num[3]++;flag=1;}
//顺子
else if(shunzi(thisP[i].a,thisP[j].a,thisP[k].a,a1,a2)&&
!(b1==b2&&b1==thisP[i].b&&b1==thisP[j].b&&b1==thisP[k].b))
{num[4]++;flag=1;}
//三条
else if(santiao(thisP[i].a,thisP[j].a,thisP[k].a,a1,a2))
{num[5]++;flag=1;}
//两对
else if(liangdui(thisP[i].a,thisP[j].a,thisP[k].a,a1,a2))
{num[6]++;flag=1;}
//一对
else if(yidui(thisP[i].a,thisP[j].a,thisP[k].a,a1,a2))
{num[7]++;flag=1;}
//要不起
if(flag==0)num[8]++;
thisP[k].vis=0;
}
thisP[j].vis=0;
}
thisP[i].vis=0;
}
for(int i=0;i<9;i++)
cout<<num[i]<<' ';
return 0;
}
bool shunzi(int a,int b,int c,int d,int e)
{
int t[5];
t[0]=a,t[1]=b,t[2]=c,t[3]=d,t[4]=e;
sort(t,t+5);
if(t[1]-t[0]==1&&t[2]-t[1]==1&&t[3]-t[2]==1&&t[4]-t[3]==1)
return true;
return false;
}
bool zhadan(int a,int b,int c,int d,int e)
{
int t[5];
t[0]=a,t[1]=b,t[2]=c,t[3]=d,t[4]=e;
sort(t,t+5);
if((t[0]==t[1]&&t[1]==t[2]&&t[2]==t[3])||
(t[1]==t[2]&&t[2]==t[3]&&t[3]==t[4]))
return true;
return false;
}
bool sandaier(int a,int b,int c,int d,int e)
{
int t[5];
t[0]=a,t[1]=b,t[2]=c,t[3]=d,t[4]=e;
sort(t,t+5);
if((t[0]==t[1]&&t[1]==t[2]&&t[2]!=t[3]&&t[3]==t[4])
||(t[0]==t[1]&&t[1]!=t[2]&&t[2]==t[3]&&t[3]==t[4]))
return true;
return false;
}
bool santiao(int a,int b,int c,int d,int e)
{
int t[5];
t[0]=a,t[1]=b,t[2]=c,t[3]=d,t[4]=e;
sort(t,t+5);
if((t[0]==t[1]&&t[0]==t[2]&&t[2]!=t[3]&&t[3]!=t[4])
||(t[0]!=t[1]&&t[1]==t[2]&&t[2]==t[3]&&t[3]!=t[4])
||(t[0]!=t[1]&&t[1]!=t[2]&&t[2]==t[3]&&t[3]==t[4]))
return true;
return false;
}
bool liangdui(int a,int b,int c,int d,int e)
{
int t[5];
t[0]=a,t[1]=b,t[2]=c,t[3]=d,t[4]=e;
sort(t,t+5);
if((t[0]!=t[1]&&t[1]==t[2]&&t[2]!=t[3]&&t[3]==t[4])
||(t[0]==t[1]&&t[1]!=t[2]&&t[2]!=t[3]&&t[3]==t[4])
||(t[0]==t[1]&&t[1]!=t[2]&&t[2]==t[3]&&t[3]!=t[4]))
return true;
return false;
}
bool yidui(int a,int b,int c,int d,int e)
{
int t[5];
t[0]=a,t[1]=b,t[2]=c,t[3]=d,t[4]=e;
sort(t,t+5);
if((t[0]==t[1]&&t[1]!=t[2]&&t[2]!=t[3]&&t[3]!=t[4])
||(t[0]!=t[1]&&t[1]==t[2]&&t[2]!=t[3]&&t[3]!=t[4])
||(t[0]!=t[1]&&t[1]!=t[2]&&t[2]==t[3]&&t[3]!=t[4])
||(t[0]!=t[1]&&t[1]!=t[2]&&t[2]!=t[3]&&t[3]==t[4]))
return true;
return false;
}