/* 杨辉三角
(a+b)的n次幂的展开式中各项的系数很有规律,
对于n=2,3,4时分别是:1 2 1, 1 3 3 1,1 4 6 4 1。这些系数构成了著名的杨辉三角形:
1
1 1
1 2 1
1 3 3 1
1 4 6 4 1
1 5 10 10 5 1
下列的程序给出了计算第m层的第n个系数的计算方法,试完善之(m,n都从0算起)。
*/
public class 杨辉三角 {
public static int f(int m, int n) {
if (m == 0)
return 1;
if (n == 0 || n == m)
return 1;
return f(m-1,n-1) + f(m-1,n);
}
public static void main(String[] args) {
System.out.print(f(5,2));
}
}
运行结果:
10
扩展:杨辉三角按金字塔格式输出
import java.util.Scanner;
public class 杨辉三角2 {
// 得到最大数的长度
public static int getMaxLen(int[] n){
int sum = 0;
for(int i=0;i<=n.length/2;i++){
if(n[i]>sum){
sum = n[i];
}
}
return (""+sum).length();
}
// 初始化填充杨辉三角
public static void init(int[][] m) {
m[0] = new int[]{1}; // 初始第一行
for(int i=1;i<m.length;i++){
m[i] = new int[i+1];
for(int j=0;j<=i;j++){
if(j==0||j==i){
m[i][j] = 1;
}else{
m[i][j] = m[i-1][j-1] + m[i-1][j];
}
}
}
}
// 输出空格
public static void printSp(int n){
for(int i=0;i<n;i++){
System.out.print(" ");
}
}
// 显示杨辉三角
public static void show(int[][] m) {
int len = getMaxLen(m[m.length-1]); // 得到最大数的长度+1个空格
if(len%2==0){ // 上一行下和对齐
len += 2; // 偶数加2
}else{
len += 1; // 奇数加1
}
for(int i=0;i<m.length;i++){ // 输出
printSp((m.length-i)*len/2); // 输出(每行前)的若干空格
for(int j=0;j<=i;j++){
System.out.print(m[i][j]);
printSp(len-(m[i][j]+"").length()); // 输出(数字间)的若干空格
}
System.out.println();
}
}
public static void main(String[] args){
Scanner scan = new Scanner(System.in);
System.out.println("输入行数(整数n):");
int n = scan.nextInt();
if(n<=0) return ;
int[][] m = new int[n][];
init(m); // 初始化填充杨辉三角
show(m); // 显示杨辉三角
}
}
运行结果:
输入行数(整数n):
12
1
1 1
1 2 1
1 3 3 1
1 4 6 4 1
1 5 10 10 5 1
1 6 15 20 15 6 1
1 7 21 35 35 21 7 1
1 8 28 56 70 56 28 8 1
1 9 36 84 126 126 84 36 9 1
1 10 45 120 210 252 210 120 45 10 1
1 11 55 165 330 462 462 330 165 55 11 1