containing block's height

 

containing block's height

hanlray@gmail.com
Revision: 1.0 Date: 2006/05/14

CSS2中height属性用来指定一个block box的content的高度(记起了box model了吗),其缺省值为auto,表示该高度由其内容决定,即随着其所包含的boxes的不同而变化。当该containing block所包含的boxes都是static positioned(在normal flow中的box)时,该height值应该大致等于被包含的block boxes的整体高度(margin+border+padding+content)之和;当该containing block包含有floated boxes的时候,情况又是怎么样呢?看一个例子:

  <div style="background-color:#FFE4B5;">
      <h1 style="float:left;">Welcome to site</h1>
      <div style="float:right">
  	<a href="">site in English</a>

  	hello,please <a href="">login</a> or <a href="">register</a>
      </div>
  </div>

结果是div的背景颜色没有显示,用Firebug查看containing div的属性,发现其height为0,padding也为0,当然无法显示了。这是因为在containing block上的相关计算(如这里的height的计算)只针对其normal flow中boxes(即static positioned boxes),这里的两个block boxes由于被float positioning而被拿出normal flow,因此虽然其高度不为0,但却对containing block的height计算毫无作用。即使这个containg div包含一个normal flow中的block box,当该box的高度小于其他floated boxes的高度时,结果仍然是不对的,因为这时div的高度是该box的高度(整个高度),并没有包围其所有boxes。

这时可以为height显式地指定一个数值,只要使其能够包围其所有的box即可,但这显然不是一个好方法;在containing block的最后加一个cleared block是一个比较好的方法:

  <div style="background-color:#FFE4B5;">
      <h1 style="float:left;">Welcome to site</h1>
      <div style="float:right">

  	<a href="">site in English</a>
  	hello,please <a href="">login</a> or <a href="">register</a>
      </div>

      <div style="clear:both"/>
  </div>

此时的结果就是正确的,这是因为一个被clear:both的block box总是从一个新行开始,其top margin扩展到上一个处于normal flow中的block box,如图。显然这样计算出的高度一定能包围其所有的boxes。

Parameter containing是指一个包含参数的对象。在深度学习中,参数通常用于定义模型的权重和偏置项。在PyTorch中,可以使用nn.Parameter()来创建参数对象,并将其添加到模型的参数列表中。参数对象可以通过model.parameters()方法返回,并且会自动保存到OrderDict中。参数对象可以通过nn.ParameterList或nn.ParameterDict进行组织和管理。\[1\]另外,参数对象也可以通过register_parameter()方法进行注册,并且会自动保存到OrderDict中。\[2\]需要注意的是,当参数赋值给模型的属性时,会自动将参数加入到模型的参数列表中,而普通的Tensor对象不会被自动加入到参数列表中。\[3\] #### 引用[.reference_title] - *1* [动手学习深度学习笔记4:自定义含模型参数的层](https://blog.csdn.net/weixin_53146190/article/details/120280758)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insertT0,239^v3^insert_chatgpt"}} ] [.reference_item] - *2* [pytorch笔记 pytorch模型中的parameter与buffer](https://blog.csdn.net/qq_40206371/article/details/118002380)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insertT0,239^v3^insert_chatgpt"}} ] [.reference_item] - *3* [pytorch中parameter和Module类总结](https://blog.csdn.net/MrR1ght/article/details/105246412)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insertT0,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值