下周将做的学术报告
目前决定下周于401信息中心做的学术报告如下,论文部分尚未完成,但是本周末之前可以做完:
- Deep Deterministic Policy Gradient and Self-Driving(深度实时策略梯度和自动驾驶);
简介:在本文中我们提出了一种DDPG方法可以在梯度空间每次都进行求解正交梯度(最有价值的方向),并给出了应用于自动驾驶的实例。
- Mento-Carlo Policy Tree for High-Performance Sampling;(用于高效采样的蒙特卡洛策略树);
简介:我们重构了一种蒙特卡洛搜索树用于策略梯度的搜寻,以达到高效采样来拟合强化学习问题中的具体函数 π ( a ( t ) ∣ S ( t ) ) \pi(a^{(t)}|S^{(t)}) π(a(t)∣S(t))以及 Q ( a ( t ) , S ( t ) ) Q(a^{(t)},S^{(t)}) Q(a(t),S(t)).
- Knowledge-Based Graph Method For Nuclear Plant Real-Time Control;(基于先验知识图的核电站实时控制)
简介:提出了人工智能用于核电站实时控制的方法,基于先验知识图和Deep RL 构造了可以快速高精度决策的Agent。