文章全面综述了**人脸表情识别(FER)**领域的可解释性研究,探讨了表情识别的基本概念、技术方法和研究进展,并重点介绍了可解释性研究的重要性以及提高模型可解释性的方法,如模型的可视化和简化等。
论文内容概述:
-
研究背景:随着人工智能技术的发展,人脸表情识别作为计算机视觉和模式识别的重要分支,得到了广泛关注。表情识别对于实现智能人机交互具有重要意义,但现有系统往往缺乏可解释性。
-
表情识别技术:文章概述了深度学习算法、机器学习算法在表情识别中的应用现状。
-
可解释性研究重要性:强调了可解释性研究对于提高模型透明度和可理解性的重要性。
-
研究进展和挑战:总结了目前的研究进展、面临的主要挑战,以及未来的研究方向。
-
主要研究内容:依据结果可解释、机理可解释、模型可解释的分类方法,对人脸表情识别中的可解释性研究方法进行了分类与总结。
-
未来发展方向:讨论了复杂表情的可解释性、多模态情绪识别的可解释性、大模型表情与情绪识别的可解释性,以及基于可解释性提升泛化能力等未来发展方向。
创新点:
- 提出了