AI大模型编写多线程并发框架(六十二):限流和并发度优化

系列文章目录



前言

在这个充满技术创新的时代,AI大模型正成为开发者们的新宠。它们可以帮助我们完成从简单的问答到复杂的编程任务,所以AI编程将会是未来的主流方向,利用AI大模型的能力,本文将介绍从零到一用AI大模型编写一个多线程并发框架。

一、项目背景

由于博主每次批量处理数据任务时,都需要去考虑线程池各种参数,例如考虑任务执行速率、任务监控、任务回调、异常处理等。由于每个需求的实际诉求不一样,所以数据处理任务的代替代码都一样,只有部分有差异,从而导致代码仓库里各种复制粘贴,
这不是博主想要的,于是,萌发了一个封装一个多线程组件框架的想法,只需要传入自定义任务等参数,其它东西都不需要关心。

使用示例如下:源码地址
1、引入依赖。

<dependency>
    <groupId>io.github.vipjoey</groupId>
    <artifactId>mmc-juc</artifactId>
    <version>1.0</version>
</dependency>

2、使用示例。


// 创建一个MmcTaskExecutor实例,用于执行单次长耗时任务
// 下面是创建一个计算从1加到100的任务,总共100个任务,采用fork分治算法,阈值为10,总共任务为100 / 10 * 2 = 20个大任务,执行速率约为10/s
MmcTaskExecutor<Integer, Integer> mmcTaskExecutor = MmcTaskExecutor.<Integer, Integer>builder()
        .taskSource(IntStream.rangeClosed(1, 100).boxed().collect(Collectors.toList())) // 设置任务源
        .taskProcessor(x -> x.stream().reduce(0, Integer::sum)) // 设置任务处理方法
        .taskMerger(Integer::sum) // 设置结果处理方法(可选)
        .threshold(10) // 设置任务处理阈值(可选)
        .taskName("mmcTaskExample") // 设置任务名称
        .rateLimiter(10, 20)  // 设置速率限制,容量为10,每秒产生令牌为20,休眠时间为10ms
        .forkJoinPoolConcurrency(4) // 设置ForkJoinPool的并发度为4
        .build();

// 同步执行并打印结果        
System.out.println("result: " + mmcTaskExecutor.execute());

// 任务执行过程监控
[mmcTaskExample] Tasks submitted. Total tasks: 100
[mmcTaskExample] Task started. Completed tasks: 14, remaining tasks: 86
[mmcTaskExample] Task started. Completed tasks: 14, remaining tasks: 86
[mmcTaskExample] Task started. Completed tasks: 20, remaining tasks: 80
[mmcTaskExample] Task started. Completed tasks: 26, remaining tasks: 74
[mmcTaskExample] Task started. Completed tasks: 33, remaining tasks: 67
[mmcTaskExample] Task started. Completed tasks: 40, remaining tasks: 60
[mmcTaskExample] Task started. Completed tasks: 46, remaining tasks: 54
[mmcTaskExample] Task started. Completed tasks: 52, remaining tasks: 48
[mmcTaskExample] Task started. Completed tasks: 58, remaining tasks: 42
[mmcTaskExample] Task started. Completed tasks: 64, remaining tasks: 36
[mmcTaskExample] Task started. Completed tasks: 70, remaining tasks: 30
[mmcTaskExample] Task started. Completed tasks: 76, remaining tasks: 24
[mmcTaskExample] Task started. Completed tasks: 82, remaining tasks: 18
[mmcTaskExample] Task started. Completed tasks: 88, remaining tasks: 12
[mmcTaskExample] Task started. Completed tasks: 94, remaining tasks: 6
[mmcTaskExample] Task started. Completed tasks: 100, remaining tasks: 0
[mmcTaskExample] Tasks completed. Elapsed time: 1107 ms 
result: 5050

二、第三轮对话-补充异步执行代码

1、由于提交任务有可能是同步的也有可能是异步的,我们需要这个能力,所以让AI补充一下。
在这里插入图片描述

2、下面是AI给的回复。

  • 【根据您的要求,我们将在MmcTaskExecutor类中添加commit方法以支持异步执行任务。同时,我们将创建一个回调接口MmcTaskCallback,用于在异步执行完成时获取结果。】

  • 【首先,我们创建一个MmcTaskCallback接口。】

public interface MmcTaskCallback<R> {
    void onComplete(R result);
}
  • 【接下来,我们修改MmcTaskExecutor类以添加commit方法和支持回调。】
import java.util.List;
import java.util.concurrent.ForkJoinPool;

public class MmcTaskExecutor<T, R> {
    private List<T> taskSource;
    private MmcTaskProcessor<T, R> taskProcessor;
    private MmcTaskMerger<R> taskMerger;
    private int threshold;
    private ForkJoinPool forkJoinPool;

    private MmcTaskExecutor(Builder<T, R> builder) {
        this.taskSource = builder.taskSource;
        this.taskProcessor = builder.taskProcessor;
        this.taskMerger = builder.taskMerger;
        this.threshold = builder.threshold;
        this.forkJoinPool = builder.forkJoinPool;
    }

    public static <T, R> Builder<T, R> builder() {
        return new Builder<>();
    }

    // 同步执行并返回结果
    public R execute() {
        MmcTask<T, R> mmcTask = new MmcTask<>(taskSource, taskProcessor, taskMerger, threshold, 0, taskSource.size());
        return forkJoinPool.invoke(mmcTask);
    }

    // 异步执行
    public void commit() {
        commit(null);
    }

    // 异步执行并获取结果
    public void commit(MmcTaskCallback<R> callback) {
        MmcTask<T, R> mmcTask = new MmcTask<>(taskSource, taskProcessor, taskMerger, threshold, 0, taskSource.size());
        forkJoinPool.submit(() -> {
            R result = mmcTask.invoke();
            if (callback != null) {
                callback.onComplete(result);
            }
        });
    }

    // ...省略Builder类代码
}
  • 【现在您可以使用commit方法异步执行任务,并通过回调函数获取结果。以下是一个示例,演示如何异步计算从1加到100的结果并在完成时输出结果。】
import java.util.ArrayList;
import java.util.List;

public class MmcTaskExample {
    public static void main(String[] args) {
        List<Integer> taskSource = new ArrayList<>();
        for (int i = 1; i <= 100; i++) {
            taskSource.add(i);
        }

        MmcTaskProcessor<Integer, Integer> taskProcessor = new MmcTaskProcessor<Integer, Integer>() {
            @Override
            public Integer process(List<Integer> taskSource) {
                int sum = 0;
                for (Integer num : taskSource) {
                    sum += num;
                }
                return sum;
            }
        };

        MmcTaskMerger<Integer> taskMerger = new MmcTaskMerger<Integer>() {
            @Override
            public Integer merge(Integer leftResult, Integer rightResult) {
                return leftResult + rightResult;
            }
        };

        MmcTaskExecutor<Integer, Integer> mmcTaskExecutor = MmcTaskExecutor.<Integer, Integer>builder()
                .taskSource(taskSource)
                .taskProcessor(taskProcessor)
                .taskMerger(taskMerger)
                .threshold(10)
                .build();

        mmcTaskExecutor.commit(result -> System.out.println("异步执行结果:" + result));  // 输出5050

        // 等待异步任务完成,防止主线程提前退出
        try {
            Thread.sleep(1000);
        } catch (InterruptedException e) {
            e.printStackTrace();
        }
    }
}

这次诉求改动不大,AI回答也很完美,我们继续优化!

三、第四轮对话-增加限流器

1、因为有些任务不能执行过快,例如刷DB数据或者远程接口调用等,需要补充限流功能。
在这里插入图片描述

2、下面是AI大模型给的回复。

  • 【为了支持速率控制,我们将使用令牌桶算法实现速率限制。首先,我们需要创建一个令牌桶类TokenBucket,然后在MmcTaskExecutor类中使用它来控制任务的执行速度。首先,我们创建一个TokenBucket类。】
public class TokenBucket {
    private final long capacity;
    private final long tokensPerSecond;
    private long tokens;
    private long lastRefillTimestamp;

    public TokenBucket(long capacity, long tokensPerSecond) {
        this.capacity = capacity;
        this.tokensPerSecond = tokensPerSecond;
        this.tokens = capacity;
        this.lastRefillTimestamp = System.nanoTime();
    }

    public synchronized boolean tryConsume() {
        refill();

        if (tokens > 0) {
            tokens--;
            return true;
        }

        return false;
    }

    private void refill() {
        long now = System.nanoTime();
        long elapsedTime = now - lastRefillTimestamp;
        long tokensToAdd = (elapsedTime * tokensPerSecond) / 1_000_000_000;
        if (tokensToAdd > 0) {
            tokens = Math.min(capacity, tokens + tokensToAdd);
            lastRefillTimestamp = now;
        }
    }
}
  • 【接下来,我们修改MmcTaskExecutor类以支持速率控制。】
import java.util.List;
import java.util.concurrent.ForkJoinPool;

public class MmcTaskExecutor<T, R> {
    private List<T> taskSource;
    private MmcTaskProcessor<T, R> taskProcessor;
    private MmcTaskMerger<R> taskMerger;
    private int threshold;
    private ForkJoinPool forkJoinPool;
    private TokenBucket tokenBucket; // 添加令牌桶成员变量

    private MmcTaskExecutor(Builder<T, R> builder) {
        this.taskSource = builder.taskSource;
        this.taskProcessor = builder.taskProcessor;
        this.taskMerger = builder.taskMerger;
        this.threshold = builder.threshold;
        this.forkJoinPool = builder.forkJoinPool;
        this.tokenBucket = builder.tokenBucket;
    }

    public static <T, R> Builder<T, R> builder() {
        return new Builder<>();
    }

    // ...省略其他方法

    public static class Builder<T, R> {
        private List<T> taskSource;
        private MmcTaskProcessor<T, R> taskProcessor;
        private MmcTaskMerger<R> taskMerger;
        private int threshold = 10;
        private ForkJoinPool forkJoinPool = new ForkJoinPool();
        private TokenBucket tokenBucket; // 添加令牌桶成员变量

        public Builder<T, R> taskSource(List<T> taskSource) {
            this.taskSource = taskSource;
            return this;
        }

        // ...省略其他方法

        public Builder<T, R> rateLimiter(long capacity, long tokensPerSecond) {
            this.tokenBucket = new TokenBucket(capacity, tokensPerSecond);
            return this;
        }

        public MmcTaskExecutor<T, R> build() {
            return new MmcTaskExecutor<>(this);
        }
    }
}
  • 【然后,我们需要修改MmcTask类以在处理任务之前尝试消耗令牌。】
import java.util.List;
import java.util.concurrent.RecursiveTask;

public class MmcTask<T, R> extends RecursiveTask<R> {
    // ...省略其他成员变量
    private TokenBucket tokenBucket;

    public MmcTask(List<T> taskSource, MmcTaskProcessor<T, R> taskProcessor, MmcTaskMerger<R> taskMerger, int threshold, int start, int end, TokenBucket tokenBucket) {
        // ...省略其他初始化代码
        this.tokenBucket = tokenBucket;
    }

    @Override
    protected R compute() {
        // 在处理任务之前尝试消耗令牌
        while (!tokenBucket.tryConsume()) {
            try {
                Thread.sleep(10);
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
        }

        // ...省略其他代码
    }
}
  • 【现在,您可以使用rateLimiter方法设置容器的速率限制。以下是一个示例,演示如何使用速率限制计算从1加到100的结果。】
import java.util.ArrayList;
import java.util.List;

public class MmcTaskExample {
    public static void main(String[] args) {
        List<Integer> taskSource = new ArrayList<>();
        for (int i = 1; i <= 100; i++) {
            taskSource.add(i);
        }

        MmcTaskProcessor<Integer, Integer> taskProcessor = new MmcTaskProcessor<Integer, Integer>() {
            @Override
            public Integer process(List<Integer> taskSource) {
                int sum = 0;
                for (Integer num : taskSource) {
                    sum += num;
                }
                return sum;
            }
        };

        MmcTaskMerger<Integer> taskMerger = new MmcTaskMerger<Integer>() {
            @Override
            public Integer merge(Integer leftResult, Integer rightResult) {
                return leftResult + rightResult;
            }
        };

        MmcTaskExecutor<Integer, Integer> mmcTaskExecutor = MmcTaskExecutor.<Integer, Integer>builder()
                .taskSource(taskSource)
                .taskProcessor(taskProcessor)
                .taskMerger(taskMerger)
                .threshold(10)
                .rateLimiter(10, 1)  // 设置速率限制
                .build();

        Integer result = mmcTaskExecutor.execute();
        System.out.println(result);  // 输出5050
    }
}
  • 【在这个示例中,我们使用rateLimiter方法设置了速率限制,每秒只能处理1个任务。然后我们使用execute方法执行任务并输出结果。因为我们设置了速率限制,所以执行任务的速度会受到限制。】

四、第五轮对话-抽取限流器接口

1、从AI大模型给出的代码来看,基本符合我们的诉求,不过也存在一下问题:

我希望任务限流器可以使用第三方例如Guava RateLimiter这些工具去限流,在工具里写死是不太合适的,我们继续让它修改。
在这里插入图片描述
2、下面是AI的回复。

  • 【为了支持第三方速率限制器,我们需要创建一个速率限制器接口RateLimiter,并将TokenBucket类实现此接口。然后,我们在MmcTaskExecutor类中使用RateLimiter接口,而不是直接使用TokenBucket类。首先,我们创建一个RateLimiter接口。】
public interface RateLimiter {
    boolean tryConsume();
}
  • 【接下来,我们修改TokenBucket类以实现RateLimiter接口。】
public class TokenBucket implements RateLimiter {
    // ...省略其他代码

    @Override
    public boolean tryConsume() {
        // ...省略其他代码
    }

    // ...省略其他代码
}
  • 【然后,我们修改MmcTaskExecutor类以使用RateLimiter接口。】
import java.util.List;
import java.util.concurrent.ForkJoinPool;

public class MmcTaskExecutor<T, R> {
    // ...省略其他成员变量
    private RateLimiter rateLimiter; // 使用RateLimiter接口

    private MmcTaskExecutor(Builder<T, R> builder) {
        // ...省略其他初始化代码
        this.rateLimiter = builder.rateLimiter;
    }

    // ...省略其他方法

    public static class Builder<T, R> {
        // ...省略其他成员变量
        private RateLimiter rateLimiter = new TokenBucket(10, 1); // 默认使用TokenBucket

        // ...省略其他方法

        public Builder<T, R> rateLimiter(RateLimiter rateLimiter) {
            this.rateLimiter = rateLimiter;
            return this;
        }

        // ...省略其他方法
    }
}

这次AI大模型的回复也很完美,是不是很棒?我们继续优化。

五、第六轮对话-修改并发度

1、由于ForkJoinPool默认是线程池的数量核心数-1,但有时候我们需要自定义去定义线程数量来控制并发度,也就是任务处理速度。
在这里插入图片描述
2、以下是AI的回复。

  • 【为了支持修改容器ForkJoinPool的默认并发度,我们可以在MmcTaskExecutor.Builder类中添加一个方法,允许用户设置并发度。修改MmcTaskExecutor类的Builder以添加设置并发度的方法:】
import java.util.List;
import java.util.concurrent.ForkJoinPool;

public class MmcTaskExecutor<T, R> {
    // ...省略其他成员变量和方法

    public static class Builder<T, R> {
        // ...省略其他成员变量和方法

        public Builder<T, R> forkJoinPoolConcurrency(int concurrency) {
            this.forkJoinPool = new ForkJoinPool(concurrency);
            return this;
        }

        // ...省略其他方法
    }
}
  • 【现在,您可以使用forkJoinPoolConcurrency方法设置ForkJoinPool的并发度。以下是一个示例,演示如何设置并发度为4。】
import java.util.ArrayList;
import java.util.List;

public class MmcTaskExample {
    public static void main(String[] args) {
        List<Integer> taskSource = new ArrayList<>();
        for (int i = 1; i <= 100; i++) {
            taskSource.add(i);
        }

        MmcTaskProcessor<Integer, Integer> taskProcessor = new MmcTaskProcessor<Integer, Integer>() {
            @Override
            public Integer process(List<Integer> taskSource) {
                int sum = 0;
                for (Integer num : taskSource) {
                    sum += num;
                }
                return sum;
            }
        };

        MmcTaskMerger<Integer> taskMerger = new MmcTaskMerger<Integer>() {
            @Override
            public Integer merge(Integer leftResult, Integer rightResult) {
                return leftResult + rightResult;
            }
        };

        MmcTaskExecutor<Integer, Integer> mmcTaskExecutor = MmcTaskExecutor.<Integer, Integer>builder()
                .taskSource(taskSource)
                .taskProcessor(taskProcessor)
                .taskMerger(taskMerger)
                .threshold(10)
                .rateLimiter(new TokenBucket(10,20)) // 设置速率限制
                .forkJoinPoolConcurrency(4) // 设置ForkJoinPool的并发度为4
                .build();

        Integer result = mmcTaskExecutor.execute();
        System.out.println(result);  // 输出5050
    }
}

下一篇,继续优化这个多线程框架。。。

三、参考文章

加我加群(备注csdn)一起交流学习!更多干货下载、项目源码和大厂内推等着你

评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值