(三)语言模型和共现矩阵

####1、语言模型
目的:克服one-hot、tf-idf方法中向量丢失句子中单词的位置关系信息
#####1)2-gram
假设语料库如下:

John likes to watch movies. Mary likes too.John also likes to watch football games.

2-gram建立索引如下:(把每个句子中相邻的2个单词用一个编码表示,不再是以前的一个单词一个编码)

"John likes” : 1,
"likes to” : 2,
"to watch” : 3,
"watch movies” : 4,
"Mary likes” : 5,
"likes too” : 6,
"John also” : 7,
"also likes” : 8,
“watch football”: 9,
“football games”: 10,

得到10个编码,所以构建的词向量长度为10;对于句子"John likes to watch movies. Mary likes too."的编码如下:(依次判断1-10个编码,第一个编码"John likes” : 1在句子中出现则为1,否则为0)
[1, 1, 1, 1, 1, 1, 0, 0, 0, 0]

#####2)N-gram
同2-gram,每个句子中相邻的N个单词用一个编码表示,不再是以前的一个单词一个编码

#####3)优缺点
优点: 考虑了词的顺序
缺点: 词表的膨胀

语言模型
一句话 (词组合) 出现的概率
p ( w 1 , . . . , w m ) = ∏ i = 1 m P ( w i ∣ w 1 , . . . , w i − 1 ) p(w_1,...,w_m)=\prod_{i=1}^{m}P(w_i|w_1,...,w_{i-1}) p(w1,...,wm)=i=1mP(wiw1,...,wi1)
Unigram/1-gram
P ( M a r y   l i k e s   t o o ) = P ( t o o ∣ M a r y , l i k e s ) ∗ P ( l i k e s ∣ M a r y ) ∗ P ( M a r y ) = P ( t o o ) ∗ P ( l i k e s ) ∗ P ( M a r y ) P(Mary\:likes\:too) = P(too | Mary, likes) * P(likes | Mary) *P(Mary)= P(too) * P(likes) * P(Mary) P(Marylikestoo)=P(tooMary,likes)P(likesMary)P(Mary)=P(too)P(likes)P(Mary)

Bi-gram/2-gram
P ( M a r y   l i k e s   t o o ) = P ( t o o ∣ M a r y , l i k e s ) ∗ P ( l i k e s ∣ M a r y ) ∗ P ( M a r y ) = P ( t o o ∣ l i k e s ) ∗ P ( l i k e s ∣ M a r r y ) ∗ P ( M a r y ) P(Mary\:likes\:too) = P(too | Mary, likes) * P(likes | Mary) *P(Mary)= P(too | likes) * P(likes | Marry) * P(Mary) P(Marylikestoo)=P(tooMary,likes)P(likesMary)P(Mary)=P(toolikes)P(likesMarry)P(Mary)

不足:无法衡量词向量之间的关系,同时向量太稀疏
####2、共现矩阵
主要用于发现主题,解决词向量相近关系的表示;
将共现矩阵行(列)作为词向量

例如:语料库如下:
• I like deep learning.
• I like NLP.
• I enjoy flying.

则共现矩阵表示如下:(使用对称的窗函数(左右window length都为1) )

例如:“I like”出现在第1,2句话中,一共出现2次,所以=2。
对称的窗口指的是,“like I”也是2次

将共现矩阵行(列)作为词向量表示后,可以知道like,enjoy都是在I附近且统计数目大约相等,他们意思相近

这里写图片描述

共现矩阵不足:
面临稀疏性问题、向量维数随着词典大小线性增长

解决:SVD、PCA降维,但是计算量大

####3、word2vec
前面方法需要存储的数据过大,这里主要是保存参数来节省,需要时候再通过计算参数得出结果。原理是通过浅层的神经网络训练(input是onehot词向量,output是预测的词向量,比如“我喜欢自学习”,input=“我”和“学习”,out=“喜欢”,input=(0001000)的话,输出时候1的位置是概率,P“喜欢”=1,语料库中的其他词则是P=0)

好的,我会尽力用通俗易懂的语言来解释共现矩阵共现矩阵(Co-occurrence Matrix)是一种用于表示词语之间共现关系的数据结构。在自然语言处理中,共现关系指的是两个词在同一个上下文中出现的次数或频率。 共现矩阵的构建非常简单。首先,我们需要定义一个上下文窗口大小,比如5个词。然后,遍历文本中的每个词,统计它和其他词在这个上下文窗口内出现的次数。最终,我们可以得到一个以词语为行和列的矩阵矩阵中的每个元素表示两个词的共现次数。 共现矩阵可以用于许多NLP任务,比如词语相似度计算、文本聚类和主题建模等。通过分析共现矩阵,我们可以发现不同词之间的关联性和语义关系。 在构建共现矩阵时,我们通常可以进行一些预处理操作。比如忽略一些常见的停用词(如“的”、“是”等),或者使用加权策略来提高一些重要词的权重。 要掌握共现矩阵的理论知识,你可以深入学习相关的教材和论文。了解共现矩阵的构建方法、上下文窗口的选择和预处理操作是非常重要的。此外,通过实践项目来应用共现矩阵也是非常有帮助的,比如使用共现矩阵来计算词语相似度或进行文本聚类分析。 希望这样的解释对你有帮助!如果还有其他问题,请随时提问。祝你在学习NLP的道路上取得进步!加油!
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值