(一)SVM推导

SVM模型就是用一个超平面H把正负样本分开的模型,如图1所示。

1、超平面的定义

假设 w w → 是垂直超平面H的法向量, x x − → 是一个负样本, x+ x + → 是一个正样本, x x − → x+ x + → 在向量 w w → 的投影点分别是A,B。所有的样本满足公式(1)。

w||w||x|OC|w||w||x+(1) w → | | w → | | ∗ x − → ⩽ | O C | ⩽ w → | | w → | | ∗ x + → ( 1 )


w||w||x|OC|0w||w||x+|OC|(2) w → | | w → | | ∗ x − → − | O C | ⩽ 0 ⩽ w → | | w → | | ∗ x + → − | O C | ( 2 )

进一步可以转化为
wx+b0wx++b(3) w → ∗ x − → + b ⩽ 0 ⩽ w → ∗ x + → + b ( 3 )

所以,当样本满足公式(4)时候,则判定为正样本,反之,是负样本。其中,公式(4)中满足等式的点落在超平面H中。
wx+b0(4) w → ⋅ x → + b ⩾ 0 ( 4 )

这里写图片描述

图.1

2、训练样本满足的约束

由前面的分析可知,超平面H可以有无数条,然而,我们定义具有最大间隔的超平面才是最优的。如图.1所示,最大间隔指的是虚线H1与H2之间的距离。其中,H1,H,H2是平行的,并且H1到H的距离与H2到H的距离相等。由公式(4),并且向量 w w → 可以伸缩,可得

{wx++b1wx+b1(5) { w → ⋅ x + → + b ⩾ 1 w → ⋅ x − → + b ⩽ − 1 ( 5 )

即为了得到最优的分割超平面H,我们要求训练的正样本和负样本满足公式(5),然后去求解最大的间隔。其中,落在虚线H1,H2的点使得公式(5)的等号成立,这些点称为 支持向量。假设样本点的标签值 y{+1,1} y ∈ { + 1 , − 1 } 。代入公式(5),有
{y+i(wx++b)1yi(wx+b)1(6) { y i + ( w → ⋅ x + → + b ) ⩾ 1 y i − ( w → ⋅ x − → + b ) ⩾ 1 ( 6 )

公式(6)可以合并为通用的样本形式
yi(wx+b)1(7) y i ( w → ⋅ x → + b ) ⩾ 1 ( 7 )

即所有的训练样本都满足公式(7),其几何意义如图.1,所有的样本点都在虚线两侧,不允许跨过虚线。注意,预测样本的时候,是允许样本点跨越虚线区域的,因为判断的分界线是超平面H。

3、最大间隔的表示

如图.2所示,最大间隔等于正样本支持向量与负样本支持向量构成的向量 x+x x + → − x − → 在法向量 w w → 上的投影长度d。
这里写图片描述
投影长度d如公式(8)所示.

d=(x+x)w||w||(8) d = ( x + → − x − → ) ⋅ w → | | w → | | ( 8 )

由于这里的 x+x x + → 和 x − → 是支持向量,满足公式(9)
yi(wx+b)=1(9) y i ( w → ⋅ x → + b ) = 1 ( 9 )

把公式(9)代入公式(8),可得
d=2||w|| d = 2 | | w → | |

即求解最大间隔表示如下:
max2||w||s.tyi(wx+b)1=0 { m a x 2 | | w → | | s . t y i ( w → ⋅ x → + b ) − 1 = 0

等价于求解
min12||w||2s.tyi(wx+b)1=0 { m i n 1 2 | | w → | | 2 s . t y i ( w → ⋅ x → + b ) − 1 = 0

其中,s.t 代表约束条件.

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值