(一)拉格朗日乘子法——分析推导

如果 z=f(x,y) z = f ( x , y ) 在条件 g(x,y)=0 g ( x , y ) = 0 的条件下,在点 (x0,y0) ( x 0 , y 0 ) 取得极值,如下图所示。
这里写图片描述
那么, f(x,y) f ( x , y ) 的梯度与 g(x,y) g ( x , y ) 的梯度平行,即向量 (fx(x0,y0),fy(x0,y0)) ( f x ′ ( x 0 , y 0 ) , f y ′ ( x 0 , y 0 ) ) 与向量 (gx(x0,y0),gy(x0,y0)) ( g x ′ ( x 0 , y 0 ) , g y ′ ( x 0 , y 0 ) ) 平行。所以有

fx(x0,y0)gx(x0,y0)=fy(x0,y0)gy(x0,y0)=λ0(1) f x ′ ( x 0 , y 0 ) g x ′ ( x 0 , y 0 ) = f y ′ ( x 0 , y 0 ) g y ′ ( x 0 , y 0 ) = − λ 0 ( 1 )


fx(x0,y0)+λ0gx(x0,y0)=0fy(x0,y0)+λ0gy(x0,y0)=0g(x0,y0)=0(2) { f x ′ ( x 0 , y 0 ) + λ 0 g x ′ ( x 0 , y 0 ) = 0 f y ′ ( x 0 , y 0 ) + λ 0 g y ′ ( x 0 , y 0 ) = 0 g ( x 0 , y 0 ) = 0 ( 2 )

引入辅助函数 L(x,y,λ)=f(x,y)+λg(x,y) L ( x , y , λ ) = f ( x , y ) + λ g ( x , y ) ,对该函数求偏导得
L(x,y,λ)x=fx(x,y)+λgx(x,y)=0L(x,y,λ)y=fy(x,y)+λgy(x,y)=0L(x,y,λ)λ=g(x,y)=0(3) { ∂ L ( x , y , λ ) ∂ x = f x ′ ( x , y ) + λ g x ′ ( x , y ) = 0 ∂ L ( x , y , λ ) ∂ y = f y ′ ( x , y ) + λ g y ′ ( x , y ) = 0 ∂ L ( x , y , λ ) ∂ λ = g ( x , y ) = 0 ( 3 )

求偏导的结果显示,公式(3)实际上就是公式(2),这意味着求 条件极值问题可以转化为 无条件极值问题求解。其中,辅助函数 L(x,y,λ)=f(x,y)+λg(x,y) L ( x , y , λ ) = f ( x , y ) + λ g ( x , y ) 拉格朗日函数。即求 z=f(x,y) z = f ( x , y ) 在条件 g(x,y)=0 g ( x , y ) = 0 的条件下,在点 (x0,y0) ( x 0 , y 0 ) 取得极值的问题可以转化为求解拉格朗日函数 L(x,y,λ)=f(x,y)+λg(x,y) L ( x , y , λ ) = f ( x , y ) + λ g ( x , y ) 偏导数为0的解.

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值