如果
z=f(x,y)
z
=
f
(
x
,
y
)
在条件
g(x,y)=0
g
(
x
,
y
)
=
0
的条件下,在点
(x0,y0)
(
x
0
,
y
0
)
取得极值,如下图所示。
那么,
f(x,y)
f
(
x
,
y
)
的梯度与
g(x,y)
g
(
x
,
y
)
的梯度平行,即向量
(fx′(x0,y0),fy′(x0,y0))
(
f
x
′
(
x
0
,
y
0
)
,
f
y
′
(
x
0
,
y
0
)
)
与向量
(gx′(x0,y0),gy′(x0,y0))
(
g
x
′
(
x
0
,
y
0
)
,
g
y
′
(
x
0
,
y
0
)
)
平行。所以有
即
引入辅助函数 L(x,y,λ)=f(x,y)+λg(x,y) L ( x , y , λ ) = f ( x , y ) + λ g ( x , y ) ,对该函数求偏导得
求偏导的结果显示,公式(3)实际上就是公式(2),这意味着求 条件极值问题可以转化为 无条件极值问题求解。其中,辅助函数 L(x,y,λ)=f(x,y)+λg(x,y) L ( x , y , λ ) = f ( x , y ) + λ g ( x , y ) 是 拉格朗日函数。即求 z=f(x,y) z = f ( x , y ) 在条件 g(x,y)=0 g ( x , y ) = 0 的条件下,在点 (x0,y0) ( x 0 , y 0 ) 取得极值的问题可以转化为求解拉格朗日函数 L(x,y,λ)=f(x,y)+λg(x,y) L ( x , y , λ ) = f ( x , y ) + λ g ( x , y ) 偏导数为0的解.