机器学习入门(十四):SVM——直观理解拉格朗日乘子法

本文介绍了拉格朗日乘子法如何解决带有约束条件的多元函数极值问题,特别是在机器学习中用于线性可分SVM的情况。通过可视化函数和约束条件,解释了拉格朗日乘子法的直观过程,包括目标函数、等式约束条件、不等式约束条件,并以实例展示了拉格朗日函数的构造和求解步骤。
摘要由CSDN通过智能技术生成

上一篇,我们获得了线性可分 SVM 的目标函数:一个带约束条件的求极值问题。

而拉格朗日乘子法,恰恰是一种多元函数在变量受到条件约束时,求极值的方法。正好可以用来解决 SVM 的目标函数最优化。

我们在此不做严格的拉格朗日乘数法正确性的数学证明,而是以最简单的函数形式为例,从直观带大家来领略整个方法的每一个步骤。

换句话说,本文是帮我们积累一些对于“为什么将目标函数转化成拉格朗日函数再最优化是可行的”这件事的感性认识。

可视化函数及其约束条件

我们用二元函数——也就是自变量为2维的函数——来做个例子(为了看着更习惯一点,我们直接用 x、y 作为自变量的两个维度)。

(被约束的)函数

我们之前有过可视化函数本身的经验。此处我们先要可视化一个二元函数 f(x,y)。

用一个大家熟悉的表达方式:z=f(x,y) 。这就涉及了3个变量:x、y 和 z。

如果在三维直角坐标系中将 f(x,y) 做出图来——把 f(x,y) “画出图来”——会是一个三维空间的曲面——这样一个函数实际上表达了 x、y、z 三者之间的关系。

比如下面几幅图,分别对应不同的 f(x,y):


v2-98652b7f1276ab5cc9b2aafaf7afd2c5_b.jpg



图 1


(函数的)约束条件

函数 f(x,y) 的约束条件为:g(x,y)=0。

g(x,y)=0 又可以写成:y=h(x) 的形式——它所表达的是 x 与 y 两者之间的相互关系!

y=h(x),如果在二维直角坐标中作图,形状应该是一条曲线。

注意:直线也属于广义的曲线;平面也属于曲面。我们说的曲线是包括直线的,曲面则包括平面。

约束条件对函数的约束

那么,一个二维图形对一个三维图形的约束从何体现呢?让我们这样做:

  1. 在自己的头脑中建立一个三维直角坐标系,有 x 轴、y 轴、z 轴, 它们互相垂直。
  2. f(x,y) 对应图形是三维坐标系里面的一个曲面——一个(可能是奇形怪状的)“体”的“外皮”。
  3. 在 z=0 的平面上,把 y=h(x) 的图形(一条曲线)画出来。
  4. 将第 3 步做出的那条曲线沿着平行 z 轴的方向平移,它平移过的轨迹也形成了一个曲面,这个曲面和 z=f(x,y) 形成的曲面会相交,交叠的部分是一条三维空间中的曲线。
  5. 换个角度考虑,第 4 步形成的曲线,其实就是 g(x,y)=0 在 z=0 平面上形成的曲线,在 z=f(x,y) 形成的曲面上的投影。

一个例子

图2是一个将上面 1-5 步骤综合起来的实例:


  • 0
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值