POJ 2406 Power Strings——kmp求最短循环子串

题意:给你一个字符串,如果这个字符串可以由某个子串重复多次构成,那么输出最大重复次数。

如abcd 输出 1;

    aaaa 输出 4;

    ababab 输出 3;

定理:假设S的长度为len,则S存在循环子串,当且仅当,len可以被len - next[len]整除,最短循环子串为S[len - next[len]]
例子证明:

设S=q1q2q3q4q5q6q7q8,并设next[8] = 6,此时str = S[len - next[len]] = q1q2,由字符串特征向量next的定义可知,q1q2q3q4q5q= q3q4q5q6q7q8,即有q1q2=q3q4,q3q4=q5q6,q5q6=q7q8,即q1q2为循环子串,且易知为最短循环子串。由以上过程可知,若len可以被len - next[len]整除,则S存在循环子串,否则不存在。
解法:利用KMP算法,求字符串的特征向量next,若len可以被len - next[len]整除,则最大循环次数n为len/(len - next[len]),否则为1

#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <string>
using namespace std;
string s;
int len, Next[1000010];
void makeNext() {
    int i = 0, j = 0;
    Next[i] = j;
    for (i = 1; i < len; i++) {
        while (j && s[i] != s[j]) j = Next[j - 1];
        if (s[i] == s[j]) j++;
        Next[i] = j;
    }
}
int main() {
    while (cin >> s && s[0] != '.') {
        len = s.size();
        makeNext();
        int L = len - Next[len - 1];
        printf("%d\n", (len % L) ? 1 : len / L);
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值