一些数学算法

   一、余数基本公式:

        二、一些模板

  求a,b最大公约数:

int gcd(int a,int b)
{
if(b==0)return a;
gcd(b,a%b);
}



求a,b最小公倍数:

int lcm(int a,int b) return a*b/gcd(a,b);


快速幂:

void kuai(int b,int p,int k)
{
   daan=1;
   while(p!=0)
   {
    if(p%2!=0)daan=(daan*b)%k;
    p=p/2;b=(b*b)%k;
   }
  
}


高精加:

// daoxu  // 存到a 

void gjj(int a[],int b[])
{
if(a[0]<b[0]){a[0]=b[0];}
int jinwei=0,linshi;
for(int uu=1;uu<=a[0];uu++)
{
linshi=a[uu]+b[uu]+jinwei;
a[uu]=linshi%10;
jinwei=linshi/10;
}
if(jinwei>=1)
 {
  ++a[0];
  a[a[0]]=jinwei;
 }  
}


高精乘:

// daoxu  //存到c[]  
void gjc(int a[],int b[])
{
c[0]=a[0]+b[0]+5;
int jinwei=0,qidian,linshi;

for(int uu=1;uu<=a[0];uu++)
{
jinwei=0;
for(int vv=1;vv<=b[0];vv++)
{
  linshi=c[vv+uu-1]+jinwei+a[uu]*b[vv];
  c[vv+uu-1]=linshi%10;
  jinwei=linshi/10;

}
if(jinwei>0)
{    
c[uu+b[0]]=jinwei;
}


    }
while(c[c[0]]==0)--c[0];
}



欧拉筛(因为每个合数都可表示为素数的积):

//然后利用了每个合数必有一个最小素因子,每个合数仅被它的最小素因子筛去正好一次。所以为线性时间。

int main()
{
n=10000000;
for(i=2;i<n;i++)
{
if(!shi[i])
sushu[tot++]=i;
for(int j=0;j<tot&&i*sushu[j]<n;j++)  
        {  
            shi[i*sushu[j]]=1;  
        }  
}
}



分解质因数:

cin>>n;
for(i=2;i<=n;i++)
{
while(!n%i) 
if(n%i==0)
{
n=n/i;
cout<<i<<" ";
}
}






   三、数论

欧几里得定理:

gcd(a,b)=gcd(b,a%b);


反证法+分类讨论   证明(需要一定逻辑觉悟):::

设gcd(a,b)=d,p、q互质,a=d*p、b=q*d;;;(a>b)

因为众所周知,余数=被除数-商*除数;;;

∴a%b=a-(a除以b的商)*b

即 a%b=dp-(dp/qd)*qd;;

∴a%b=d(p-(p/q)*q);;;←至于为什么这样导,实际上是为了分类讨论、、、、


 注:因为余数大于等于0,p=后面的式子+余数,,所以p大于后面的数     


情况一: p=(p除以q的商)*q       即p被q整除,所以a也被b整除;;;

         所以a % b=p(p-p)=0;;

          所以  gcd(b,a%b)=gcd(b,0)=b=gcd(a,b)      ps:任何数和0的最大公约数是这个数本身,,,     

情况二: p>(p除以q的商)*q  

    //如果gcd ( p - (p/q)*q , q ) != 1, 那么gcd ( p , q ) != 1 , 那么与p和q互质矛盾,所以p-(p/q)*q与q互质     

    这句话可能有些难理解   解释一下

      若gcd(p-(p/q)*q,q)!=1;即    p-(p/q)*q与q不互质,,,那么设这个不为1公约数为o,,q=ow,

              就得到了p-(p/q)*ow  和ow  都有o,所以p中必含o,,从而写成  o*(p/o  -(p/q)*w)的形式     注:p/q看成一个常数;;;;

                       所以   p和q中都有o,所以gcd(p,q)!=1;

                                    又因为设的p和q互质,,所以  gcd ( p - (p/q)*q , q ) != 1  不成立;;

                       所以  情况二 不成立;;

就证出了  只存在一种情况: p=(p除以q的商)*q    从而 gcd(a,b)=gcd(b,a%b);;;

           

int gcd(int a,int b)
{
if(b==0)return a;
gcd(b,a%b);
}


  


延伸算法:辗转相除法





扩展欧几里得算法:

先说一下逆元:


如图,   x就是a在模m意义下的逆元(   逆元都是余数=1  );;



扩欧:

ax+by = gcd ( a , b )有无数组整数解  ;;;

作用,求x,y使上式成立(不一定最小);;;




证明:

用辗转相除算出gcd时,b=gcd,a%b=0,x1=1,y1=0;(以上一步的视角)

这时   a*x+b*y=gcd=bx1+(a%b)*y1

         右边=bx1+ (a- (a/b)*b  )*y1

               =bx1+   a*y1-  (a/b)*b*y1

              =(y1)*a+   (x1 -(a/b)*y1)* b

又因为左边=(x)*a+              (y) *b

          所以x=y1,      y=   x1 -(a/b)*y1;;;

         ......一直往上递归到顶层即求出了x和y;;;



就是反复用欧几里得定理,递归把a、b不断缩小,在将x、y往外扩;;;


void exgcd(int a,int b)
{
if(b==0)
{
 x=1;
 y=0;
 daan=a;
 return;
}
exgcd(b,a%b);
lin=y;
y=x-a/b*y;
x=lin;
}



至于求逆元: 

1、    应用扩展欧几里得原理

    若x是a关于m的逆元;;

那么  ax-my=1;

   当然,需要m与a互质,,否则怎么模都不会剩1,于是无解;;

      根据   ax+by=gcd(a,b)

设y=-y  (⊙﹏⊙)b

    得到   ax+my=1;;

   用扩欧求出x

  x就是a的逆元啦!!!


2、费马小定理:

a^(p-1)≡1(a%p)

   








期望:

(1)计算用性质:

期望的和=和的期望:

有1、2、3三种情况,出现1、2的期望=出现1的期望+出现2的期望;;;

适用于递推,递归,dp
















  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值