【bzoj4000】[TJOI2015]棋盘 dp+矩乘

题目坑爹,行列是从0开始算的,所以样例中是指最中间那个1为棋子
f[i][S]表示考虑到第i行,第i行状态为S的方案数

矩乘优化即可

开内存小了1,蛋疼。


#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<cmath>
#include<iostream>
#include<algorithm>
#define ll unsigned int

using namespace std;

struct yts
{
	int x,y;
	ll a[(1<<6)+1][(1<<6)+1];
}a,b,c,ans;

int A[10][10],B[3][10];
int n,m,p,k,size;

void mul(yts &a,yts &b,yts &c)
{
	memset(ans.a,0,sizeof(ans.a));
	for (int i=1;i<=a.x;i++)
	  for (int j=1;j<=b.y;j++)
	    for (int k=1;k<=a.y;k++)
	      ans.a[i][j]+=a.a[i][k]*b.a[k][j];
	c.x=a.x;c.y=b.y;
	for (int i=1;i<=c.x;i++)
	  for (int j=1;j<=c.y;j++)
	    c.a[i][j]=ans.a[i][j];
}

void power(yts &a,int y)
{
	c.x=size;c.y=size;
	memset(c.a,0,sizeof(c.a));
	for (int i=1;i<=size;i++) c.a[i][i]=1;
	while (y)
	{
		if (y&1) mul(c,a,c);
		mul(a,a,a);
		y>>=1;
	}
}

bool check(int x,int y)
{
	memset(B,0,sizeof(B));
	for (int i=1;i<=m;i++) if (x&(1<<(i-1))) B[1][i]=1;
	for (int i=1;i<=m;i++) if (y&(1<<(i-1))) B[2][i]=1;
	for (int i=1;i<=2;i++)
	  for (int j=1;j<=m;j++)
	    if (B[i][j])
	      for (int k=1;k<=A[2][0];k++)
	      {
	      	if (j+A[2][k]<1 || j+A[2][k]>m) continue;
	      	if (B[i][j+A[2][k]]) return 0;
	      }
	for (int j=1;j<=m;j++)
	  if (B[1][j])
	    for (int k=1;k<=A[3][0];k++)
	    {
	    	if (j+A[3][k]<1 || j+A[3][k]>m) continue;
	    	if (B[2][j+A[3][k]]) return 0;
	    }
	for (int j=1;j<=m;j++)
	  if (B[2][j])
	    for (int k=1;k<=A[1][0];k++)
	    {
	    	if (j+A[1][k]<1 || j+A[1][k]>m) continue;
	    	if (B[1][j+A[1][k]]) return 0;
	    }
	return 1;
}

int main()
{
	scanf("%d%d",&n,&m);
	scanf("%d%d",&p,&k);
	k++;
	for (int i=1;i<=3;i++)
	  for (int j=1;j<=p;j++)
	  {
	  	int x;
	    scanf("%d",&x);
	    if (x && (i!=2 || j!=k)) A[i][++A[i][0]]=j-k;
	  }
	size=1<<m;
	a.x=size;a.y=size;
	for (int i=0;i<size;i++)
	  for (int j=0;j<size;j++)
	    a.a[i+1][j+1]=check(i,j);
	power(a,n);
	b.x=1;b.y=size;
	b.a[1][1]=1;
	mul(b,c,b);
	ll ans=0;
	for (int i=1;i<=size;i++) ans+=b.a[1][i];
	printf("%u\n",ans);
	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值