河中跳房子

描述

每年奶牛们都要举办各种特殊版本的跳房子比赛,包括在河里从一个岩石跳到另一个岩石。这项激动人心的活动在一条长长的笔直河道中进行,在起点和离起点L远 (1 ≤ L≤ 1,000,000,000) 的终点处均有一个岩石。在起点和终点之间,有N (0 ≤ N ≤ 50,000) 个岩石,每个岩石与起点的距离分别为Di (0 < Di < L)。

在比赛过程中,奶牛轮流从起点出发,尝试到达终点,每一步只能从一个岩石跳到另一个岩石。当然,实力不济的奶牛是没有办法完成目标的。

农夫约翰为他的奶牛们感到自豪并且年年都观看了这项比赛。但随着时间的推移,看着其他农夫的胆小奶牛们在相距很近的岩石之间缓慢前行,他感到非常厌烦。他计划移走一些岩石,使得从起点到终点的过程中,最短的跳跃距离最长。他可以移走除起点和终点外的至多(0 ≤ M ≤ N) 个岩石。

请帮助约翰确定移走这些岩石后,最长可能的最短跳跃距离是多少?

输入

第一行包含三个整数L, N, M,相邻两个整数之间用单个空格隔开。
接下来N行,每行一个整数,表示每个岩石与起点的距离。岩石按与起点距离从近到远给出,且不会有两个岩石出现在同一个位置。

输出

一个整数,最长可能的最短跳跃距离。

样例输入

25 5 2
2
11
14
17
21

样例输出

4

提示

在移除位于2和14的两个岩石之后,最短跳跃距离为4(从17到21或从21到25)。

解题思路

我们可以用二分法去求最长的最短跳跃距离 我好像说了句废话

总之我们可以,通过设二分左端点为初始位置,右端点为终点,然后取中间值,作为我们最短跳跃距离,再用一个变量记录拿走了多少块石头,如果超过 m 说明这种方法不可取要减小 最短跳跃距离,反之如果满足条件我们可以增加 最短跳跃距离。

其实就是普通的二分加上了限制条件

代码示例

#include<iostream>
#include<cmath>
#include<cstring>
#include<cstdio>
#include<algorithm>
using namespace std;

int L,n,m;
int a[100100];

int main(){
	cin>>L>>n>>m;
	for(int i=1;i<=n;i++) cin>>a[i];
	a[n+1]=L;
	int l=1,r=L,mid;
	while(l<r){
		int num=0;
		int pos=0;
		mid=(l+r)>>1;
		for(int i=1;i<=n+1;i++){
			if(a[i]-pos<=mid) num++;
			else pos=a[i];
		}
		if(num>m) r=mid;
		else l=mid+1;
	}
	cout<<l<<endl;
	return 0;
} 

我当时怎么就脑子抽筋没想出来呢

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值