描述
每年奶牛们都要举办各种特殊版本的跳房子比赛,包括在河里从一个岩石跳到另一个岩石。这项激动人心的活动在一条长长的笔直河道中进行,在起点和离起点L远 (1 ≤ L≤ 1,000,000,000) 的终点处均有一个岩石。在起点和终点之间,有N (0 ≤ N ≤ 50,000) 个岩石,每个岩石与起点的距离分别为Di (0 < Di < L)。
在比赛过程中,奶牛轮流从起点出发,尝试到达终点,每一步只能从一个岩石跳到另一个岩石。当然,实力不济的奶牛是没有办法完成目标的。
农夫约翰为他的奶牛们感到自豪并且年年都观看了这项比赛。但随着时间的推移,看着其他农夫的胆小奶牛们在相距很近的岩石之间缓慢前行,他感到非常厌烦。他计划移走一些岩石,使得从起点到终点的过程中,最短的跳跃距离最长。他可以移走除起点和终点外的至多M (0 ≤ M ≤ N) 个岩石。
请帮助约翰确定移走这些岩石后,最长可能的最短跳跃距离是多少?
输入
第一行包含三个整数L, N, M,相邻两个整数之间用单个空格隔开。
接下来N行,每行一个整数,表示每个岩石与起点的距离。岩石按与起点距离从近到远给出,且不会有两个岩石出现在同一个位置。
输出
一个整数,最长可能的最短跳跃距离。
样例输入
25 5 2 2 11 14 17 21
样例输出
4
提示
在移除位于2和14的两个岩石之后,最短跳跃距离为4(从17到21或从21到25)。
解题思路
我们可以用二分法去求最长的最短跳跃距离 我好像说了句废话
总之我们可以,通过设二分左端点为初始位置,右端点为终点,然后取中间值,作为我们最短跳跃距离,再用一个变量记录拿走了多少块石头,如果超过 m 说明这种方法不可取要减小 最短跳跃距离,反之如果满足条件我们可以增加 最短跳跃距离。
其实就是普通的二分加上了限制条件
代码示例
#include<iostream>
#include<cmath>
#include<cstring>
#include<cstdio>
#include<algorithm>
using namespace std;
int L,n,m;
int a[100100];
int main(){
cin>>L>>n>>m;
for(int i=1;i<=n;i++) cin>>a[i];
a[n+1]=L;
int l=1,r=L,mid;
while(l<r){
int num=0;
int pos=0;
mid=(l+r)>>1;
for(int i=1;i<=n+1;i++){
if(a[i]-pos<=mid) num++;
else pos=a[i];
}
if(num>m) r=mid;
else l=mid+1;
}
cout<<l<<endl;
return 0;
}
我当时怎么就脑子抽筋没想出来呢