MinMaxScaler使用

1、函数定义与反操作

1.1函数定义式:

X_std = (X - X.min(axis=0)) / (X.max(axis=0) - X.min(axis=0))
注意这里的操作是按列操作的

1.2 反操作

X_scaled = X_std * (max - min) + min

2、实例

from sklearn.preprocessing import MinMaxScaler
import numpy as np
#正向操作
>>> x = np.array([[ 1, -1,  2],
      						 [ 2,  0,  0],
     						 [ 0,  1, -1]])
>>>  scaler=MinMaxScaler()
>>> x_train=scaler.fit_transform(x)
>>> print(x_train)
[[0.5        0.         1.        ]
 [1.         0.5        0.33333333]
 [0.         1.         0.        ]]
 #第一行三列元素计算过程:
 0.5=2-1/(2-0)=1/2=0.5
 0=(-1--1)/(1--1)=0/2=0
 1=(2--1)/(2--1)=1
 
#反向操作 
>>>y=scaler.inverse_transform(x_train)
>>> y
array([[ 1., -1.,  2.],
       [ 2.,  0.,  0.],
       [ 0.,  1., -1.]])
#反向计算过程
1=0.5*2-0+0=1
-1=0*1--1+-1=-1
2=1*2--1+-1=3-1=2
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值