**质数的多种判断方法**

这篇博客探讨了四种判断质数的算法,从基本的枚举法到优化的平方根法,再到高配版的只判断奇数,最后是尊享版利用6的倍数相邻性质进一步优化。每种算法都减少了不必要的计算,提高了效率,其中尊享版的时间复杂度为O(sqrt(n)/3)。
摘要由CSDN通过智能技术生成

一类问题: 判定一个整数n(n>1)是否为素数。
算法1:

直接根据素数的定义枚举i
从2到(n−1),如果n%i==0n为合数。
时间复杂度:O(n)

**  
bool is_prime(int n) {
    int i;
    for(i = 2; i < n; i++)
        if(n % i == 0) return false;
    return true;
} 
**

算法2:
大部分人都知道的比较快的方法:判断从2到sqrt(n)是否存在其约数,
时间复杂度O(sqrt(n))

bool is_prime(int n) {
int i;
for(i = 2; i * i <= n; i++)
if(n % i == 0) return false;
return true;

算法3:

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值