Keras CNN 数字识别

37 篇文章 0 订阅
难点是版本变化后 方法不再匹配 ,同时每个方法具体意义需要揣摩

# Larger CNN for the MNIST Dataset
# 2.Negative dimension size caused by subtracting 5 from 1 for 'conv2d_4/convolution' (op: 'Conv2D') with input shapes
# 3.UserWarning: Update your `Conv2D` call to the Keras 2 API: http://blog.csdn.net/johinieli/article/details/69222956
# 4.Error when checking input: expected conv2d_1_input to have shape (None, 28, 28, 1) but got array with shape (60000, 1, 28, 28)

# talk to wumi,you good .

# python 3.5.4
# keras.__version__  : 2.0.6
# thensorflow 1.2.1
# theano 0.10.0beta1

# 不错的blog  http://blog.csdn.net/shizhengxin123/article/details/72383728

import numpy
from keras.datasets import mnist
from keras.models import Sequential
from keras.layers import Dense
from keras.layers import Dropout
from keras.layers import Flatten
from keras.layers.convolutional import Conv2D
from keras.layers.convolutional import MaxPooling2D
from keras.utils import np_utils
import matplotlib.pyplot as plt
from keras.constraints import maxnorm
from keras.optimizers import SGD
# fix random seed for reproducibility
seed = 7
numpy.random.seed(seed)
# load data
(X_train, y_train), (X_test, y_test) = mnist.load_data()
# reshape to be [samples][pixels][width][height]
X_train = X_train.reshape(X_train.shape[0], 28, 28,1).astype('float32')
X_test = X_test.reshape(X_test.shape[0],28, 28,1).astype('float32')
#X_train = X_train.reshape(X_train.shape[0], 1, 28, 28).astype('float32')
#X_test = X_test.reshape(X_test.shape[0], 1, 28, 28).astype('float32')    <---4 
# normalize inputs from 0-255 to 0-1
X_train = X_train / 255
X_test = X_test / 255
# one hot encode outputs
y_train = np_utils.to_categorical(y_train)
y_test = np_utils.to_categorical(y_test)
num_classes = y_test.shape[1]
###raw
# define the larger model
def larger_model():
    # create model
    model = Sequential()
    model.add(Conv2D(30, (5, 5), padding='valid', input_shape=(28, 28,1), activation='relu'))
	#model.add(Conv2D(30, (5, 5), padding='valid', input_shape=(28, 28,1), activation='relu'))   <----3,2
    model.add(MaxPooling2D(pool_size=(2, 2)))
    model.add(Dropout(0.4))
    model.add(Conv2D(15, (3, 3), activation='relu'))
    model.add(MaxPooling2D(pool_size=(2, 2)))
    model.add(Dropout(0.4))
    model.add(Flatten())
    model.add(Dense(128, activation='relu'))
    model.add(Dropout(0.4))
    model.add(Dense(50, activation='relu'))
    model.add(Dropout(0.4))
    model.add(Dense(num_classes, activation='softmax'))
    # Compile model
    model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
    return model

# build the model
model = larger_model()
# Fit the model
model.fit(X_train, y_train, validation_data=(X_test, y_test), epochs=10, batch_size=200, verbose=2)   # epochs 200 too bigger
#model.fit(X_train, y_train, validation_data=(X_test, y_test), nb_epoch=200, batch_size=200, verbose=2)
# Final evaluation of the model
scores = model.evaluate(X_test, y_test, verbose=0)
print("Large CNN Error: %.2f%%" % (100-scores[1]*100))
scores1 = model.evaluate(X_test[0], y_test[0], verbose=0)
print(scores1)

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值