svm util tool

37 篇文章 0 订阅
#!/usr/bin/env python

import os
import sys
from svm import *
from svm import __all__ as svm_all


__all__ = ['evaluations', 'svm_load_model', 'svm_predict', 'svm_read_problem',
           'svm_save_model', 'svm_train'] + svm_all

sys.path = [os.path.dirname(os.path.abspath(__file__))] + sys.path

def svm_read_problem(data_file_name):
	"""
	svm_read_problem(data_file_name) -> [y, x]

	Read LIBSVM-format data from data_file_name and return labels y
	and data instances x.
	"""
	prob_y = []
	prob_x = []
	for line in open(data_file_name):
		line = line.split(None, 1)
		# In case an instance with all zero features
		if len(line) == 1: line += ['']
		label, features = line
		xi = {}
		for e in features.split():
			ind, val = e.split(":")
			xi[int(ind)] = float(val)
		prob_y += [float(label)]
		prob_x += [xi]
	return (prob_y, prob_x)

def svm_load_model(model_file_name):
	"""
	svm_load_model(model_file_name) -> model

	Load a LIBSVM model from model_file_name and return.
	"""
	model = libsvm.svm_load_model(model_file_name.encode())
	if not model:
		print("can't open model file %s" % model_file_name)
		return None
	model = toPyModel(model)
	return model

def svm_save_model(model_file_name, model):
	"""
	svm_save_model(model_file_name, model) -> None

	Save a LIBSVM model to the file model_file_name.
	"""
	libsvm.svm_save_model(model_file_name.encode(), model)

def evaluations(ty, pv):
	"""
	evaluations(ty, pv) -> (ACC, MSE, SCC)

	Calculate accuracy, mean squared error and squared correlation coefficient
	using the true values (ty) and predicted values (pv).
	"""
	if len(ty) != len(pv):
		raise ValueError("len(ty) must equal to len(pv)")
	total_correct = total_error = 0
	sumv = sumy = sumvv = sumyy = sumvy = 0
	for v, y in zip(pv, ty):
		if y == v:
			total_correct += 1
		total_error += (v-y)*(v-y)
		sumv += v
		sumy += y
		sumvv += v*v
		sumyy += y*y
		sumvy += v*y
	l = len(ty)
	ACC = 100.0*total_correct/l
	MSE = total_error/l
	try:
		SCC = ((l*sumvy-sumv*sumy)*(l*sumvy-sumv*sumy))/((l*sumvv-sumv*sumv)*(l*sumyy-sumy*sumy))
	except:
		SCC = float('nan')
	return (ACC, MSE, SCC)

def svm_train(arg1, arg2=None, arg3=None):
	"""
	svm_train(y, x [, options]) -> model | ACC | MSE
	svm_train(prob [, options]) -> model | ACC | MSE
	svm_train(prob, param) -> model | ACC| MSE

	Train an SVM model from data (y, x) or an svm_problem prob using
	'options' or an svm_parameter param.
	If '-v' is specified in 'options' (i.e., cross validation)
	either accuracy (ACC) or mean-squared error (MSE) is returned.
	options:
	    -s svm_type : set type of SVM (default 0)
	        0 -- C-SVC		(multi-class classification)
	        1 -- nu-SVC		(multi-class classification)
	        2 -- one-class SVM
	        3 -- epsilon-SVR	(regression)
	        4 -- nu-SVR		(regression)
	    -t kernel_type : set type of kernel function (default 2)
	        0 -- linear: u'*v
	        1 -- polynomial: (gamma*u'*v + coef0)^degree
	        2 -- radial basis function: exp(-gamma*|u-v|^2)
	        3 -- sigmoid: tanh(gamma*u'*v + coef0)
	        4 -- precomputed kernel (kernel values in training_set_file)
	    -d degree : set degree in kernel function (default 3)
	    -g gamma : set gamma in kernel function (default 1/num_features)
	    -r coef0 : set coef0 in kernel function (default 0)
	    -c cost : set the parameter C of C-SVC, epsilon-SVR, and nu-SVR (default 1)
	    -n nu : set the parameter nu of nu-SVC, one-class SVM, and nu-SVR (default 0.5)
	    -p epsilon : set the epsilon in loss function of epsilon-SVR (default 0.1)
	    -m cachesize : set cache memory size in MB (default 100)
	    -e epsilon : set tolerance of termination criterion (default 0.001)
	    -h shrinking : whether to use the shrinking heuristics, 0 or 1 (default 1)
	    -b probability_estimates : whether to train a SVC or SVR model for probability estimates, 0 or 1 (default 0)
	    -wi weight : set the parameter C of class i to weight*C, for C-SVC (default 1)
	    -v n: n-fold cross validation mode
	    -q : quiet mode (no outputs)
	"""
	prob, param = None, None
	if isinstance(arg1, (list, tuple)):
		assert isinstance(arg2, (list, tuple))
		y, x, options = arg1, arg2, arg3
		param = svm_parameter(options)
		prob = svm_problem(y, x, isKernel=(param.kernel_type == PRECOMPUTED))
	elif isinstance(arg1, svm_problem):
		prob = arg1
		if isinstance(arg2, svm_parameter):
			param = arg2
		else:
			param = svm_parameter(arg2)
	if prob == None or param == None:
		raise TypeError("Wrong types for the arguments")

	if param.kernel_type == PRECOMPUTED:
		for xi in prob.x_space:
			idx, val = xi[0].index, xi[0].value
			if xi[0].index != 0:
				raise ValueError('Wrong input format: first column must be 0:sample_serial_number')
			if val <= 0 or val > prob.n:
				raise ValueError('Wrong input format: sample_serial_number out of range')

	if param.gamma == 0 and prob.n > 0:
		param.gamma = 1.0 / prob.n
	libsvm.svm_set_print_string_function(param.print_func)
	err_msg = libsvm.svm_check_parameter(prob, param)
	if err_msg:
		raise ValueError('Error: %s' % err_msg)

	if param.cross_validation:
		l, nr_fold = prob.l, param.nr_fold
		target = (c_double * l)()
		libsvm.svm_cross_validation(prob, param, nr_fold, target)
		ACC, MSE, SCC = evaluations(prob.y[:l], target[:l])
		if param.svm_type in [EPSILON_SVR, NU_SVR]:
			print("Cross Validation Mean squared error = %g" % MSE)
			print("Cross Validation Squared correlation coefficient = %g" % SCC)
			return MSE
		else:
			print("Cross Validation Accuracy = %g%%" % ACC)
			return ACC
	else:
		m = libsvm.svm_train(prob, param)
		m = toPyModel(m)

		# If prob is destroyed, data including SVs pointed by m can remain.
		m.x_space = prob.x_space
		return m

def svm_predict(y, x, m, options=""):
	"""
	svm_predict(y, x, m [, options]) -> (p_labels, p_acc, p_vals)

	Predict data (y, x) with the SVM model m.
	options:
	    -b probability_estimates: whether to predict probability estimates,
	        0 or 1 (default 0); for one-class SVM only 0 is supported.
	    -q : quiet mode (no outputs).

	The return tuple contains
	p_labels: a list of predicted labels
	p_acc: a tuple including  accuracy (for classification), mean-squared
	       error, and squared correlation coefficient (for regression).
	p_vals: a list of decision values or probability estimates (if '-b 1'
	        is specified). If k is the number of classes, for decision values,
	        each element includes results of predicting k(k-1)/2 binary-class
	        SVMs. For probabilities, each element contains k values indicating
	        the probability that the testing instance is in each class.
	        Note that the order of classes here is the same as 'model.label'
	        field in the model structure.
	"""

	def info(s):
		print(s)

	predict_probability = 0
	argv = options.split()
	i = 0
	while i < len(argv):
		if argv[i] == '-b':
			i += 1
			predict_probability = int(argv[i])
		elif argv[i] == '-q':
			info = print_null
		else:
			raise ValueError("Wrong options")
		i+=1

	svm_type = m.get_svm_type()
	is_prob_model = m.is_probability_model()
	nr_class = m.get_nr_class()
	pred_labels = []
	pred_values = []

	if predict_probability:
		if not is_prob_model:
			raise ValueError("Model does not support probabiliy estimates")

		if svm_type in [NU_SVR, EPSILON_SVR]:
			info("Prob. model for test data: target value = predicted value + z,\n"
			"z: Laplace distribution e^(-|z|/sigma)/(2sigma),sigma=%g" % m.get_svr_probability());
			nr_class = 0

		prob_estimates = (c_double * nr_class)()
		for xi in x:
			xi, idx = gen_svm_nodearray(xi, isKernel=(m.param.kernel_type == PRECOMPUTED))
			label = libsvm.svm_predict_probability(m, xi, prob_estimates)
			values = prob_estimates[:nr_class]
			pred_labels += [label]
			pred_values += [values]
	else:
		if is_prob_model:
			info("Model supports probability estimates, but disabled in predicton.")
		if svm_type in (ONE_CLASS, EPSILON_SVR, NU_SVC):
			nr_classifier = 1
		else:
			nr_classifier = nr_class*(nr_class-1)//2
		dec_values = (c_double * nr_classifier)()
		for xi in x:
			xi, idx = gen_svm_nodearray(xi, isKernel=(m.param.kernel_type == PRECOMPUTED))
			label = libsvm.svm_predict_values(m, xi, dec_values)
			if(nr_class == 1):
				values = [1]
			else:
				values = dec_values[:nr_classifier]
			pred_labels += [label]
			pred_values += [values]

	ACC, MSE, SCC = evaluations(y, pred_labels)
	l = len(y)
	if svm_type in [EPSILON_SVR, NU_SVR]:
		info("Mean squared error = %g (regression)" % MSE)
		info("Squared correlation coefficient = %g (regression)" % SCC)
	else:
		info("Accuracy = %g%% (%d/%d) (classification)" % (ACC, int(l*ACC/100), l))

	return pred_labels, (ACC, MSE, SCC), pred_values


 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值