相信大家都听说一个“百岛湖”的地方吧,百岛湖的居民生活在不同的小岛中,当他们想去其他的小岛时都要通过划小船来实现。现在政府决定大力发展百岛湖,发展首先要解决的问题当然是交通问题,政府决定实现百岛湖的全畅通!经过考察小组RPRush对百岛湖的情况充分了解后,决定在符合条件的小岛间建上桥,所谓符合条件,就是2个小岛之间的距离不能小于10米,也不能大于1000米。当然,为了节省资金,只要求实现任意2个小岛之间有路通即可。其中桥的价格为 100元/米。
每组数据首先是一个整数C(C <= 100),代表小岛的个数,接下来是C组坐标,代表每个小岛的坐标,这些坐标都是 0 <= x, y <= 1000的整数。
2 2 10 10 20 20 3 1 1 2 2 1000 1000
1414.2 oh!
#include<cstdio>
#include<algorithm>
#include<cmath>
using namespace std;
double set[105];
struct road
{
double x,y;
double cost;
}data[5000],a[5000];
bool cmp(road a,road b)
{
return a.cost<b.cost;
}
double find(double x)
{
int r=x;
while (r!=set[r])
r=set[r];
int j=x;
double i;
while(j!=r)
{
i=set[j];
set[j]=r;
j=i;
}
return r;
}
void join(double x,double y)
{
int fx,fy;
fx=find(x);
fy=find(y);
if(fx!=fy)
set[fx]=fy;
}
int main()
{
int c,t;
int dot;
scanf("%d",&t);
while(t--)
{
scanf("%d",&c);
for(int i=1;i<=c;i++)
{
scanf("%lf%lf",&data[i].x,&data[i].y);
}
int k=1;
for(int i=1;i<c;i++)
for(int j=i+1;j<=c;j++)
{
double e=sqrt((data[i].x-data[j].x)*(data[i].x-data[j].x)+(data[i].y-data[j].y)*(data[i].y-data[j].y));
if(e>=10&&e<=1000)
{
a[k].x=i;
a[k].y=j;
a[k].cost=100*e;
k++;
}
}
for(int i=1;i<=c;i++)
set[i]=i;
double Cost=0;
dot=0;
sort(a+1,a+k,cmp);
for(int i=1;i<=k-1;i++)
{
if(find(a[i].x)!=find(a[i].y))
{
join(a[i].x,a[i].y);
Cost+=a[i].cost;
}
}
for(int i=1;i<=c;i++)
if(set[i]==i)
{
dot++;
if(dot>1)
break;
}
if(dot>1)
printf("oh!\n");
else
printf("%.1f\n",Cost);
}
return 0;
}