数学
New-Time
这个作者很懒,什么都没留下…
展开
-
相机模型-计算机视觉
计算机视觉翻译 2016-04-25 11:46:15 · 5604 阅读 · 1 评论 -
容易理解的傅里叶变换
要让读者在不看任何数学公式的情况下理解傅里叶分析。转载 2016-03-30 15:23:45 · 427 阅读 · 0 评论 -
SLAM中的marginalization 和 Schur complement
视觉SLAM的很多论文中,会大量或者偶尔出现marginalization这个词(翻译为边缘化),有的论文是特地要用它,比如sliding window slam [2], okvis [3], dso [4]。而有的论文是简单的提到,比如g2o[1],orbslam。因此,很有必要对这个概念进行了解。marg 基础在我们这个工科领域,它来源于概率论中的边际分布(margi转载 2016-10-24 14:11:10 · 1465 阅读 · 0 评论 -
最小二乘法–高斯牛顿迭代法
最小二乘法–高斯牛顿迭代法本文将详解最小二乘法的非线性拟合,高斯牛顿迭代法。1.原理高斯—牛顿迭代法的基本思想是使用泰勒级数展开式去近似地代替非线性回归模型,然后通过多次迭代,多次修正回归系数,使回归系数不断逼近非线性回归模型的最佳回归系数,最后使原模型的残差平方和达到最小。①已知m个点:②函数原型:其中:(m>=n)③目的是找到最优解β,使得残差平方和最小转载 2016-10-26 11:03:36 · 29111 阅读 · 5 评论 -
homography, essential and fundamental matrix
本次打算梳理下最基本的几个矩阵之间的关系以及计算,总结大体内容:1. 单应性矩阵的基本概念什么是单应性矩阵?单应性变换包含什么样的射影组合(projective transformation)?单应性关系的前提条件?单应性与极几何的联系?2. 单应性矩阵的计算 本质矩阵和基础矩阵的性质,上一篇博文有详细介绍,所以此处只讲计算方法了。3. 基础矩转载 2017-03-07 09:16:56 · 3020 阅读 · 3 评论 -
奇异值分解(SVD)原理详解及推导
在网上看到有很多文章介绍SVD的,讲的也都不错,但是感觉还是有需要补充的,特别是关于矩阵和映射之间的对应关系。前段时间看了国外的一篇文章,叫A Singularly Valuable Decomposition The SVD of a Matrix,觉得分析的特别好,把矩阵和空间关系对应了起来。本文就参考了该文并结合矩阵的相关知识把SVD原理梳理一下。 SVD不仅是一个数学问题,在工程应转载 2017-05-25 11:10:10 · 360 阅读 · 0 评论 -
机器学习中的范数规则化之(一)L0、L1与L2范数
今天我们聊聊机器学习中出现的非常频繁的问题:过拟合与规则化。我们先简单的来理解下常用的L0、L1、L2和核范数规则化。最后聊下规则化项参数的选择问题。这里因为篇幅比较庞大,为了不吓到大家,我将这个五个部分分成两篇博文。知识有限,以下都是我一些浅显的看法,如果理解存在错误,希望大家不吝指正。谢谢。 监督机器学习问题无非就是“minimizeyour error while...转载 2018-04-25 14:04:22 · 268 阅读 · 0 评论 -
机器学习中的范数规则化之(二)核范数与规则项参数选择
上一篇博文,我们聊到了L0,L1和L2范数,这篇我们絮叨絮叨下核范数和规则项参数选择。知识有限,以下都是我一些浅显的看法,如果理解存在错误,希望大家不吝指正。谢谢。 三、核范数 核范数||W||*是指矩阵奇异值的和,英文称呼叫Nuclear Norm。这个相对于上面火热的L1和L2来说,可能大家就会陌生点。那它是干嘛用的呢?霸气登场:约束Low-Rank(低秩)。OK,OK,那我们得知...转载 2018-04-25 14:07:19 · 292 阅读 · 0 评论