证明: 对于所有非负整数
n
n
n,以下等式成立:
1
+
2
+
3
+
⋯
+
n
=
n
(
n
+
1
)
2
.
1 + 2 + 3 + \cdots + n = \frac{n(n+1)}{2}.
1+2+3+⋯+n=2n(n+1).
证明思路
-
假设存在反例:
- 设
C
C
C 为所有使等式不成立的非负整数的集合:
C = { n ∈ N ∣ 1 + 2 + 3 + ⋯ + n ≠ n ( n + 1 ) 2 } . C = \{ n \in \mathbb{N} \mid 1 + 2 + 3 + \cdots + n \neq \frac{n(n+1)}{2} \}. C={n∈N∣1+2+3+⋯+n=2n(n+1)}. - 假设 C C C 非空。
- 设
C
C
C 为所有使等式不成立的非负整数的集合:
-
应用良序原理:
- 根据良序原理(WOP), C C C 中存在最小元素 c c c。
-
分析最小反例 c c c:
- 由于 c c c 是 C C C 的最小元素,等式对于所有 n < c n < c n<c 成立,但对于 n = c n = c n=c 不成立。
- 特别地, c > 0 c > 0 c>0,因为等式在 n = 0 n = 0 n=0 时成立。
-
推导矛盾:
- 对于
n
=
c
−
1
n = c - 1
n=c−1,等式成立:
1 + 2 + ⋯ + ( c − 1 ) = ( c − 1 ) c 2 . 1 + 2 + \cdots + (c-1) = \frac{(c-1)c}{2}. 1+2+⋯+(c−1)=2(c−1)c. - 将
c
c
c 加到等式两边:
1 + 2 + ⋯ + ( c − 1 ) + c = ( c − 1 ) c 2 + c = c ( c + 1 ) 2 . 1 + 2 + \cdots + (c-1) + c = \frac{(c-1)c}{2} + c = \frac{c(c+1)}{2}. 1+2+⋯+(c−1)+c=2(c−1)c+c=2c(c+1). - 这意味着等式对于 n = c n = c n=c 也成立,与 c ∈ C c \in C c∈C 矛盾。
- 对于
n
=
c
−
1
n = c - 1
n=c−1,等式成立:
-
结论:
- 假设 C C C 非空导致矛盾,因此 C C C 必须为空集。
- 即等式对所有非负整数 n n n 成立。
证明
步骤1:假设存在反例
- 设
C
C
C 为所有使等式不成立的非负整数的集合:
C = { n ∈ N ∣ 1 + 2 + 3 + ⋯ + n ≠ n ( n + 1 ) 2 } . C = \{ n \in \mathbb{N} \mid 1 + 2 + 3 + \cdots + n \neq \frac{n(n+1)}{2} \}. C={n∈N∣1+2+3+⋯+n=2n(n+1)}. - 假设 C C C 非空。
步骤2:应用良序原理
- 根据良序原理(WOP), C C C 中存在最小元素 c c c。
步骤3:分析最小反例 c c c
- 由于 c c c 是 C C C 的最小元素,等式对于所有 n < c n < c n<c 成立,但对于 n = c n = c n=c 不成立。
- 特别地, c > 0 c > 0 c>0,因为等式在 n = 0 n = 0 n=0 时成立。
步骤4:推导矛盾
- 对于
n
=
c
−
1
n = c - 1
n=c−1,等式成立:
1 + 2 + ⋯ + ( c − 1 ) = ( c − 1 ) c 2 . 1 + 2 + \cdots + (c-1) = \frac{(c-1)c}{2}. 1+2+⋯+(c−1)=2(c−1)c. - 将
c
c
c 加到等式两边:
1 + 2 + ⋯ + ( c − 1 ) + c = ( c − 1 ) c 2 + c = c ( c + 1 ) 2 . 1 + 2 + \cdots + (c-1) + c = \frac{(c-1)c}{2} + c = \frac{c(c+1)}{2}. 1+2+⋯+(c−1)+c=2(c−1)c+c=2c(c+1). - 这意味着等式对于 n = c n = c n=c 也成立,与 c ∈ C c \in C c∈C 矛盾。
步骤5:结论
- 假设 C C C 非空导致矛盾,因此 C C C 必须为空集。
- 即等式对所有非负整数 n n n 成立。
总结
通过良序原理,我们证明了对于所有非负整数
n
n
n,以下等式成立:
1
+
2
+
3
+
⋯
+
n
=
n
(
n
+
1
)
2
.
1 + 2 + 3 + \cdots + n = \frac{n(n+1)}{2}.
1+2+3+⋯+n=2n(n+1).
这一证明展示了良序原理在数学证明中的强大作用。