使用扩展欧几里得算法对逆元求解

扩展欧几里得算法求逆元

解方程 ax + by = gcd(a, b)

在欧几里得算法中通过定理gcd(a, b) = gcd(b, a%b),我们使用递归求得a与b的最大公约数,在递归边界当b = 0时,a = gcd(a, b),此时显然有a * 1 + b * 0 = gcd。对于这样的一个式子,我们能否对它进行推广呢?

  • 在递归的其中一步,通过相关定理(此处不叙述)可知 a x 1 + b y 1 = g c d ( a , b ) ax_1 + by_1 = gcd(a, b) ax1+by1=gcd(a,b)中解 x 1 、 y 1 x_1、y_1 x1y1一定存在
  • 下一步计算 g c d ( b , a % b ) gcd(b, a \% b) gcd(b,a%b)时,又有 b x 2 + ( a % b ) y 2 = g c d ( b , a % b ) bx_2 + (a \% b)y_2 = gcd(b, a \% b) bx2+(a%b)y2=gcd(b,a%b)成立
  • 而 g c d ( a , b ) = g c d ( b , a % b ) 而gcd(a, b) = gcd(b, a\%b) gcd(a,b)=gcd(b,a%b)
  • 所以 a x 1 + b y 1 = b x 2 + ( a % b ) y 2 ax_1 + by_1 = bx_2 + (a \% b)y_2 ax1+by1=bx2+(a%b)y2成立,这样我们就发现 x 1 、 x 2 、 y 1 、 y 2 x_1、x_2、y_1、y_2 x1x2y1y2之间存在关系
  • a % b = a − ( a / b ) ∗ b a \% b = a - (a/b) * b a%b=a(a/b)b成立(想一想为什么?)
  • 代入得 a x 1 + b y 1 = b x 2 + ( a − ( a / b ) ∗ b ) y 2 ax_1 + by_1 = bx_2 + (a - (a/b) * b)y_2 ax1+by1=bx2+(a(a/b)b)y2
  • 整理得 a x 1 + b y 1 = a y 2 + b ( x 2 − ( a / b ) y 2 ) ax_1 + by_1 = ay_2 + b(x_2 - (a/b)y_2) ax1+by1=ay2+b(x2(a/b)y2)
  • 由于对于递归过程中任一步都满足,对比两式,可得递归表达式

{ x 1 = y 2 y 1 = x 2 − ( a / b ) y 2 \left\{ \begin{array}{c} x_1 = y_2 \\ y_1 = x_2 - (a / b)y_2 \end{array} \right. {x1=y2y1=x2(a/b)y2

  • 已知递归边界a * 1 + b * 0 = gcd,递归表达式,能够递归得到ax + by = gcd(a, b)的其中一个解
//求最大公约数的同时求ax + by = gcd(a, b)的解
//使用引用,exGcd函数结束时,x,y中就是所求解
int exGcd(int a, int b, int &x, int &y) {
    //递归边界
    if (b == 0) {
        x = 1; y = 0; return a;
    }

    //递归计算最大公约数gcd
    int gcd = exGcd(b, a % b, x, y);

    //递推公式,求解
    int temp = x;
    x = y;
    y = temp - a / b * y;

    return gcd;
}

乘法逆元的求解

  • 由定义知,求a模m的逆元,就是求解同余式 a x ≡ 1 ( m o d m ) ax \equiv 1(mod m) ax1(modm)
  • a x ≡ 1 ( m o d m ) ax \equiv 1(mod m) ax1(modm)
  • ( a x − 1 ) % m = 0 (ax - 1) \% m = 0 (ax1)%m=0
  • 存在一个整数z满足 a x − 1 = m z ax - 1 = mz ax1=mz
  • a x − m z = 1 ax - mz = 1 axmz=1
  • 存在y = -z使得 a x + m y = 1 ax + my = 1 ax+my=1
  • 所以求a模m的逆元,就是求解同余式 a x ≡ 1 ( m o d m ) ax \equiv 1(mod m) ax1(modm),也就是求方程 a x + m y = 1 ax + my = 1 ax+my=1的解,并且在实际使用中,一般把x的最小正整数解称为a模m的逆元
//返回值是a模m的逆元
int inv(int a, int m) {
    int x;
    int y;
    int gcd = exGcd(a, m, x, y);    //此时得到的x是方程的一个解,但不一定是方程的最小正整数解,x可能为负
    return (x % m + m) % m;         //(x % m + m) % m 是方程最小正整数解,也就是a模m的逆元
}
  • 0
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值