大数定理的通俗理解

看概率论中的大数定理,全部用数学语言表达,初学时实在难以理解。略作整理贯通,做笔记如下。

“大数”“小数”实质应叫“多数”“少数”

小数定律是说,如果统计数据很少,那么事件就表现为各种极端情况,而这些情况都是偶然事件,跟它的期望值一点关系都没有。但如果是大数呢,这就有了大数定理。

大数定律说如果统计数据足够大,那么事物出现的频率就能无限接近他的期望值。

概率书中数学语言的描述

用人话讲

弱大数定理用一句话表述就是n很大时它们的算术平均值很接近期望值。(当然前提随机变量??是独立同分布,期望值最一样,它们指 ??,?=0,1,..。)

弱大数定理是抽样统计的理论基础,例如估算全国人口的平均身高,一般通过做多个抽样,分另计算其均值,再对其均值求平均数,作为所有样本的平均身高。参照样品标准差。

估算身高的例子中,随机变量??就是指一次抽样得到的平均身高,明显多个抽样可以是独立的,而且多个抽样理论上服从同一分布(相同期望和方差)

上面定理特别说明了随机变量服从同一分布,实际上即使X1,X2,…Xk不服从同一分布结论也成立,这被称为切比雪夫大数定理,再看看切比雪夫不等式

切比雪夫不等式

不知道随机变量的具体概率密度函数,但知道它总体的均值和方差时,可用切比雪夫不等式来估算一定条件下的概率。

例如,已知所有学生身高的的均值E(x)和方差D(x),然后粗略请估计身高3倍方差的学生所占比列

 

 

伯努利大数定理 

 

伯努利大数定理是日常中最常被使用的,它的直观表达就是只要做的试验够多,出现的次数除以总次数的结果接近统计概率p,这也是频率到概率概念演变的理论基础

举个例子,结合概率论里面的概念。

”抛5次硬币“是一种试验,一共作n重,

“ 3次出现正面”,称为事件A,n重试验出现A的次数为fA

 另外已知"抛5次3次正面"的概率是p,这是一个先验可统计概率。

如果n很大,则出现A的次数除以n就可做为统计的概率p

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值