看概率论中的大数定理,全部用数学语言表达,初学时实在难以理解。略作整理贯通,做笔记如下。
“大数”“小数”实质应叫“多数”“少数”
小数定律是说,如果统计数据很少,那么事件就表现为各种极端情况,而这些情况都是偶然事件,跟它的期望值一点关系都没有。但如果是大数呢,这就有了大数定理。
大数定律说如果统计数据足够大,那么事物出现的频率就能无限接近他的期望值。
概率书中数学语言的描述
用人话讲
弱大数定理用一句话表述就是n很大时它们的算术平均值很接近期望值。(当然前提随机变量??是独立同分布,期望值最一样,它们指 ??,?=0,1,..。)
弱大数定理是抽样统计的理论基础,例如估算全国人口的平均身高,一般通过做多个抽样,分另计算其均值,再对其均值求平均数,作为所有样本的平均身高。参照样品标准差。
估算身高的例子中,随机变量??就是指一次抽样得到的平均身高,明显多个抽样可以是独立的,而且多个抽样理论上服从同一分布(相同期望和方差)
上面定理特别说明了随机变量服从同一分布,实际上即使X1,X2,…Xk不服从同一分布结论也成立,这被称为切比雪夫大数定理,再看看切比雪夫不等式
切比雪夫不等式
不知道随机变量的具体概率密度函数,但知道它总体的均值和方差时,可用切比雪夫不等式来估算一定条件下的概率。
例如,已知所有学生身高的的均值E(x)和方差D(x),然后粗略请估计身高3倍方差内的学生所占比列
伯努利大数定理
伯努利大数定理是日常中最常被使用的,它的直观表达就是只要做的试验够多,出现的次数除以总次数的结果接近统计概率p,这也是频率到概率概念演变的理论基础
举个例子,结合概率论里面的概念。
”抛5次硬币“是一种试验,一共作n重,
“ 3次出现正面”,称为事件A,n重试验出现A的次数为fA
另外已知"抛5次3次正面"的概率是p,这是一个先验可统计概率。
如果n很大,则出现A的次数除以n就可做为统计的概率p