大数定理和中心极限定理的通俗理解。

一直觉得大数定理和中心极限定理很神秘,很模糊。这次下决心来搞一个彻底清楚,研究一下。


先介绍一下大数定理。网上查了一下由下面几个版本。


切比雪夫大数定律用统计方法来估计期望的理论依据。E(X)1nnk=1xk 


直观含义很简单,就是,求平均。举个例子来说,加入班上由 80个同学,那么随机选一个同学,他的身高应该是班里面的平均值。


贝努利大数定律事件 A 发生的频率 nAn 依概率收敛于事件 A 的概率 p。明确了频率的稳定性,当 n 很大时,事件发生的频率与概率有较大偏差的可能性很小。pnAn


这个版本定义是从概率的角度,当N很大的时候,事件A发生的概率等于A发生的频率。


中心极限定理


自然界与生产中,一些现象受到许多相互独立的随机因素的影响,如果每个因素所产生的影响都很微小时,总的影响可以看作是服从正态分布的.
在独立同分布的情况下,无论 X1,X2,...,Xn 的分布函数为何,它们的平均数 X¯¯¯¯ 当 n 充分大的时候总是近似地服从正态分布。


所以这样就很好理解为什么身高/智商/考试成绩符合正态分布了. 因为这些属性都取决于非常非常多的变量, 相当于一个有着n多股票的投资组合.这样他们总体组成的表现就会像他们的平均分布正态分布。


所以两个定理的核心思想都是平均。不管单个的样本(大数定理),还是分布(中心极限定理)。如果N足够大都会趋向于平均。
大数定理中心极限定理是概率论中的两个重要定理,它们都是关于随机变量序列的极限行为的定理大数定理是指,对于一组独立同分布的随机变量,它们的算术平均值在概率意义下收敛于它们的期望值。也就是说,当样本数量足够大时,样本的平均值会趋近于总体的平均值。这个定理在统计学中有着广泛的应用,例如在抽样调查中,我们可以通过对样本进行统计分析来推断总体的特征。 中心极限定理是指,对于一组独立同分布的随机变量,它们的在样本数量足够大时,近似服从于正态分布。也就是说,当我们对一个随机事件进行多次独立实验并将结果求时,这个的分布会趋近于正态分布。这个定理在统计学中也有着广泛的应用,例如在抽样调查中,我们可以通过对样本进行统计分析来推断总体的特征。 下面是一个演示中心极限定理的例子: 假设我们有一个硬币,正反面出现的概率都是50%。我们进行1000次独立实验,每次实验记录正面朝上的次数。我们将这1000次实验的结果求,得到一个随机变量X。根据中心极限定理,当样本数量足够大时,X的分布会趋近于正态分布。我们可以通过Python代码来演示这个过程: ```python import random import matplotlib.pyplot as plt # 进行1000次实验,每次实验记录正面朝上的次数 results = [] for i in range(1000): result = sum([random.randint(0, 1) for _ in range(10)]) results.append(result) # 绘制结果的直方图 plt.hist(results, bins=range(11)) plt.show() ``` 通过运行上述代码,我们可以看到,当样本数量足够大时,结果的分布会趋近于正态分布。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值