近几年来,兴起了一股人工智能热潮,让人们见到了AI的能力和强大,比如图像识别,语音识别,机器翻译,无人驾驶等等。总体来说,AI的门槛还是比较高,不仅要学会使用框架实现,更重要的是,需要有一定的数学基础,如线性代数,矩阵,微积分等。
幸庆的是,国内外许多大神都已经给我们造好“轮子”,我们可以直接来使用某些模型。今天就和大家交流下如何实现一个简易版的人脸对比,非常有趣!
我们都知道Python容易学,但是就是不知道如何去学,去哪里找资料,机器学习,人工智能,深度学习,都在这学习,小编推荐一个学习平台,欢迎加入python学习交流q群先250+933+691,分享我精心准备的Python学习资料,0基础到进阶!希望你们在学习Python道路上少走弯路!加油!
整体思路:
预先导入所需要的人脸识别模型
遍历循环识别文件夹里面的图片,让模型“记住”人物的样子
输入一张新的图像,与前一步文件夹里面的图片比对,返回最接近的结果
使用到的第三方模块和模型:
模块:os,dlib,glob,numpy
模型:人脸关键点检测器,人脸识别模型
1.导入需要的模块和模型
这里解释一下两个dat文件:
它们的本质是参数值(