【很有趣】用Python实现一个简单的人脸识别,原来我和这个明星如此相似

本文介绍如何使用Python和预训练的深度学习模型实现一个简单的人脸识别系统,通过比较人脸特征,找出与目标照片最相似的名人。通过导入dlib库和人脸识别模型,计算图片特征并计算欧氏距离,实现图像之间的相似度比较。以林国斌为例,系统识别出他最接近黎明,展示了Python在人工智能领域的应用和趣味性。
摘要由CSDN通过智能技术生成

近几年来,兴起了一股人工智能热潮,让人们见到了AI的能力和强大,比如图像识别,语音识别,机器翻译,无人驾驶等等。总体来说,AI的门槛还是比较高,不仅要学会使用框架实现,更重要的是,需要有一定的数学基础,如线性代数,矩阵,微积分等。

幸庆的是,国内外许多大神都已经给我们造好“轮子”,我们可以直接来使用某些模型。今天就和大家交流下如何实现一个简易版的人脸对比,非常有趣!
我们都知道Python容易学,但是就是不知道如何去学,去哪里找资料,机器学习,人工智能,深度学习,都在这学习,小编推荐一个学习平台,欢迎加入python学习交流q群先250+933+691,分享我精心准备的Python学习资料,0基础到进阶!希望你们在学习Python道路上少走弯路!加油!
整体思路:

预先导入所需要的人脸识别模型

遍历循环识别文件夹里面的图片,让模型“记住”人物的样子

输入一张新的图像,与前一步文件夹里面的图片比对,返回最接近的结果

使用到的第三方模块和模型:

模块:os,dlib,glob,numpy

模型:人脸关键点检测器,人脸识别模型

1.导入需要的模块和模型

在这里插入图片描述
这里解释一下两个dat文件:

它们的本质是参数值(

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值