在金融业务中,风控是核心。无论是银行、消费金融公司还是互联网信贷平台,风控建模贯穿业务全生命周期。从用户申请贷款到贷后催收,每个环节都依赖模型精准识别风险、优化决策。记得刚开始工作时,对于风控中评分A卡、评分B卡、评分C卡的位置和作用没有很清晰的认知。随着经验的积累,以及一些岗位的体验,慢慢对风控建模有了更清晰的认知。本文结合行业实践,以一张图的形式简单地呈现风控建模在贷前、贷中、贷后的核心作用,并解析关键模型及数据应用,让你能快速窥探信贷风控模型全貌。
一、什么是风控建模?
风控建模的本质是数据驱动决策:
贷前聚焦“精准筛选”, 通过A卡和反欺诈模型降低坏账率。
贷中强调“动态调整”, 利用行为数据优化用户体验与风险平衡。
贷后侧重“资产保全”, 通过催收模型最大化回收效率。
二、风控模型全貌一张图
信贷风控模型一张图展示如下: