数据结构学习笔记之二叉树

定义:
        专业定义:
            1、有且只有一个称为根的节点
            2、有若干个互不相交的子树,这些子树本身也是一棵树
        通俗定义:
            1、树是由节点和边组成
            2、 每个节点只有一个父节点但可以有多个子节点
            3、但有一个节点例外,该节点没有父节点,此节点称为父节点

            专业的术语:
                    节点、父节点、子节点、子孙、堂兄弟
                    深度:从根节点到最底层节点的层数称之为深度,根节点是第一层
                    非终端节点:实际就是非叶子节点
                    度:子节点的个数,树的度为子节点最大的个数
分类:
            一般树:任意一个节点的子节点个数不受限制
            二叉树:任意一个节点的子节点个数最多两个,且子节点的位置不可更改
                        分类:
                                一般二叉树
                                满二叉树:在不增加树的层数的前提下,无法再多添加一个节点的二叉树就是满二叉树
                                完全二叉树:如果只是删除了满二叉树最底层最右边的连续若干个节点,这样形成的二叉树就是完全二叉树 
 
            森林:
                    n个互不相交的树的集合

树的存储:
            二叉树的存储
                        连续存储【完全二叉树】
                                    优点:    
                                            查找某个节点的父节点和子节点(也包括判断有没有左右节点)
                                    缺点:
                                               耗用内存空间过大
                        链式存储
                  一般树的存储
                                双亲表示法:求父节点方便
                                孩子表示法:求子节点方便
                                孩子双亲表示法:求父节点和子节点都很方便
                                二叉树表示法:把一个普通树转化成二叉树来存储,具体转换方法:
                                                       设法保证任一一个节点的左指针域指向它的第一个孩子
                                                                                                右指针域指向它的堂兄弟
                                                        只要能满足条件就能把普通树转化为二叉树
                                                        一个普通树转化成的二叉树一定没有右子树,指向他的堂兄弟
                
                   森林的存储:根节点当做堂兄弟 ->二叉树表示法
操作:
            遍历:先序遍历:先访问根节点,再先序访问左子树,再后序访问右子树
                        中序遍历:中序遍历左子树,再访问根节点,再中序遍历右子树
                        后序遍历:先中序遍历左子树,再中序遍历右子树,再访问根节点
            已知两种遍历序列求原始二叉树
                        已知先序和中序或者已知中序和后序,我们可以还原出原始二叉树,但是通过先序和后序是无法还原吃原始的二叉树的
                        换种说法:只有通过先序和中序,或者通过中序和后序我们才可以唯一缺点一个二叉树
已知先序和中序求->原始二叉树->后序:
            例:先序ABCDEFGH, 中序BDCEAFHG ---->后序:DECBHHGFA
                       由先序 A一定是根节点, 由中序BDCE 在A的左边,FHG在A的右边
                        再看A中谁先出现 谁就是根 在看B中 再分左右
已知中序和后序求->原始二叉树->先序:
             例:中序BDCEAFHG,后序DECBHGFA
                        后序的最后一个为根节点,再中序分左右
                        由后序可知A一定是根节点   BDCE 在A左边,FHG在A右边
                            再由后序倒过来看  B就是根节点, 由中序知DCE在B右边
                            再由后序知C是B的右子树  再由中序知D在C左边  E在C右边~
                        右边同理
                        
                        


树的应用
                树是数据库中数据组织一种重要形式
                操作系统子父进程的关系本身就是一棵树
                面向对象语言中类的继承关系
                霍夫曼树
                
树的二叉树遍历具体程序演示:

#include <stdio.h>
#include <malloc.h>
#include <stdlib.h>

typedef struct BinaryTree
{
	int  data;
	struct BinaryTree * pLchild; 
	struct BinaryTree * pRchild;
}BTREE;

BTREE * creatBTree(void);
void PreTraverseBTree(BTREE *);
void InTraverseBTree(BTREE *);
void PostTraverseBTree(BTREE *);

int main()
{
	BTREE * pT = creatBTree();

//	PreTraverseBTree(pT);
	InTraverseBTree(pT);
//	PostTraverseBTree(pT);
	
	system("pause");
	return 0;
}

BTREE * creatBTree(void)
{
	BTREE * pA = (BTREE *)malloc(sizeof(BTREE));
	BTREE * pB = (BTREE *)malloc(sizeof(BTREE));
	BTREE * pC = (BTREE *)malloc(sizeof(BTREE));
	BTREE * pD = (BTREE *)malloc(sizeof(BTREE));
	BTREE * pE = (BTREE *)malloc(sizeof(BTREE));

	pA->pLchild = pB;
	pA->pRchild = pC;
	pA->data = 'A';
	pB->pLchild = NULL;
	pB->pRchild = NULL;
	pB->data = 'B';
	pC->pLchild = pD;
	pC->pRchild = NULL;
	pC->data = 'C';
	pD->pLchild = NULL;
	pD->pRchild = pE;
	pD->data = 'D';
	pE->pLchild = NULL;
	pE->pRchild = NULL;
	pE->data = 'E';

	return pA;
}

void PreTraverseBTree(BTREE * pT)
{
	//根、左、右
	if (NULL != pT)
	{

		printf_s("%c\n", pT->data);
		if (NULL != pT->pLchild)
		{
			PreTraverseBTree(pT->pLchild);
		}
		if (NULL != pT->pRchild)
		{
			PreTraverseBTree(pT->pRchild);
		}
	}
}

void InTraverseBTree(BTREE * pT)
{
	if (NULL != pT)
	{
		if (NULL != pT->pLchild)
		{
			InTraverseBTree(pT->pLchild);
		}
		printf_s("%c\n", pT->data);
		if (NULL != pT->pRchild)
		{
			InTraverseBTree(pT->pRchild);
		}
	}
}

void PostTraverseBTree(BTREE * pT)
{
	if (NULL != pT)
	{
		if (NULL != pT->pLchild)
		{
			PostTraverseBTree(pT->pLchild);
		}
		if (NULL != pT->pRchild)
		{
			PostTraverseBTree(pT->pRchild);
		}
		printf_s("%c\n", pT->data);
	}
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值