定义:
专业定义:
1、有且只有一个称为根的节点
2、有若干个互不相交的子树,这些子树本身也是一棵树
通俗定义:
1、树是由节点和边组成
2、 每个节点只有一个父节点但可以有多个子节点
3、但有一个节点例外,该节点没有父节点,此节点称为父节点
专业的术语:
节点、父节点、子节点、子孙、堂兄弟
深度:从根节点到最底层节点的层数称之为深度,根节点是第一层
非终端节点:实际就是非叶子节点
度:子节点的个数,树的度为子节点最大的个数
分类:
一般树:任意一个节点的子节点个数不受限制
二叉树:任意一个节点的子节点个数最多两个,且子节点的位置不可更改
分类:
一般二叉树
满二叉树:在不增加树的层数的前提下,无法再多添加一个节点的二叉树就是满二叉树
完全二叉树:如果只是删除了满二叉树最底层最右边的连续若干个节点,这样形成的二叉树就是完全二叉树
森林:
n个互不相交的树的集合
树的存储:
二叉树的存储
连续存储【完全二叉树】
优点:
查找某个节点的父节点和子节点(也包括判断有没有左右节点)
缺点:
耗用内存空间过大
链式存储
一般树的存储
双亲表示法:求父节点方便
孩子表示法:求子节点方便
孩子双亲表示法:求父节点和子节点都很方便
二叉树表示法:把一个普通树转化成二叉树来存储,具体转换方法:
设法保证任一一个节点的左指针域指向它的第一个孩子
右指针域指向它的堂兄弟
只要能满足条件就能把普通树转化为二叉树
一个普通树转化成的二叉树一定没有右子树,指向他的堂兄弟
森林的存储:根节点当做堂兄弟 ->二叉树表示法
操作:
遍历:先序遍历:先访问根节点,再先序访问左子树,再后序访问右子树
中序遍历:中序遍历左子树,再访问根节点,再中序遍历右子树
后序遍历:先中序遍历左子树,再中序遍历右子树,再访问根节点
已知两种遍历序列求原始二叉树
已知先序和中序或者已知中序和后序,我们可以还原出原始二叉树,但是通过先序和后序是无法还原吃原始的二叉树的
换种说法:只有通过先序和中序,或者通过中序和后序我们才可以唯一缺点一个二叉树
已知先序和中序求->原始二叉树->后序:
例:先序ABCDEFGH, 中序BDCEAFHG ---->后序:DECBHHGFA
由先序 A一定是根节点, 由中序BDCE 在A的左边,FHG在A的右边
再看A中谁先出现 谁就是根 在看B中 再分左右
已知中序和后序求->原始二叉树->先序:
例:中序BDCEAFHG,后序DECBHGFA
后序的最后一个为根节点,再中序分左右
由后序可知A一定是根节点 BDCE 在A左边,FHG在A右边
再由后序倒过来看 B就是根节点, 由中序知DCE在B右边
再由后序知C是B的右子树 再由中序知D在C左边 E在C右边~
右边同理
树的应用
树是数据库中数据组织一种重要形式
操作系统子父进程的关系本身就是一棵树
面向对象语言中类的继承关系
霍夫曼树
树的二叉树遍历具体程序演示:
#include <stdio.h>
#include <malloc.h>
#include <stdlib.h>
typedef struct BinaryTree
{
int data;
struct BinaryTree * pLchild;
struct BinaryTree * pRchild;
}BTREE;
BTREE * creatBTree(void);
void PreTraverseBTree(BTREE *);
void InTraverseBTree(BTREE *);
void PostTraverseBTree(BTREE *);
int main()
{
BTREE * pT = creatBTree();
// PreTraverseBTree(pT);
InTraverseBTree(pT);
// PostTraverseBTree(pT);
system("pause");
return 0;
}
BTREE * creatBTree(void)
{
BTREE * pA = (BTREE *)malloc(sizeof(BTREE));
BTREE * pB = (BTREE *)malloc(sizeof(BTREE));
BTREE * pC = (BTREE *)malloc(sizeof(BTREE));
BTREE * pD = (BTREE *)malloc(sizeof(BTREE));
BTREE * pE = (BTREE *)malloc(sizeof(BTREE));
pA->pLchild = pB;
pA->pRchild = pC;
pA->data = 'A';
pB->pLchild = NULL;
pB->pRchild = NULL;
pB->data = 'B';
pC->pLchild = pD;
pC->pRchild = NULL;
pC->data = 'C';
pD->pLchild = NULL;
pD->pRchild = pE;
pD->data = 'D';
pE->pLchild = NULL;
pE->pRchild = NULL;
pE->data = 'E';
return pA;
}
void PreTraverseBTree(BTREE * pT)
{
//根、左、右
if (NULL != pT)
{
printf_s("%c\n", pT->data);
if (NULL != pT->pLchild)
{
PreTraverseBTree(pT->pLchild);
}
if (NULL != pT->pRchild)
{
PreTraverseBTree(pT->pRchild);
}
}
}
void InTraverseBTree(BTREE * pT)
{
if (NULL != pT)
{
if (NULL != pT->pLchild)
{
InTraverseBTree(pT->pLchild);
}
printf_s("%c\n", pT->data);
if (NULL != pT->pRchild)
{
InTraverseBTree(pT->pRchild);
}
}
}
void PostTraverseBTree(BTREE * pT)
{
if (NULL != pT)
{
if (NULL != pT->pLchild)
{
PostTraverseBTree(pT->pLchild);
}
if (NULL != pT->pRchild)
{
PostTraverseBTree(pT->pRchild);
}
printf_s("%c\n", pT->data);
}
}