在实际业务场景下,经常会遇到在Hive、MapReduce、Spark中需要生成唯一的数值型ID。
一般常用的做法有:
- MapReduce中使用1个Reduce来生成;
- Hive中使用row_number分析函数来生成,其实也是1个Reduce;
- 借助HBase或Redis或Zookeeper等其它框架的计数器来生成;
数据量不大的情况下,可以直接使用1和2方法来生成,但如果数据量巨大,1个Reduce处理起来就非常慢。
在数据量非常大的情况下,如果你仅仅需要唯一的数值型ID,注意:不是需要”连续的唯一的数值型ID”,那么可以考虑采用本文中介绍的方法,否则,请使用第3种方法来完成。
Spark中生成这样的非连续唯一数值型ID,非常简单,直接使用zipWithUniqueId()即可。
关于zipWithUniqueId,更多精彩内容 点我学
参考zipWithUniqueId()的方法,在MapReduce和Hive中,实现如下:
在Spark中,zipWithUniqueId是通过使用分区Index作为每个分区ID的开始值,在每个分区内,ID增长的步长为该RDD的分区数,那么在MapReduce和Hive中,也可以照此思路实现,Spark中的分区数,即为MapReduce中的Map数,Spark分区的Index,即为Map Task的ID。Map数,可以通过JobConf的getNumMapTasks(),而Map Task ID,可以通过参数mapred.task.id获取,格式如:attempt_1478926768563_0537_m_000004_0,截取m_000004_0中的4,再加1,作为该Map Task的ID起始值。注意:这两个只均需要在Job运行时才能获取。另外,从图中也可以看出,每个分区/Map Task中的数据量不是绝对一致的,因此