近些年来,Python的热度一直处于“网红”的地位,是广大开发者中最受欢迎的编程语言,因此很多人开始学习Python,今天好学编程给大家推荐一套Python学习路线的书籍清单,大家可以自行选择合适的书籍阅读学习。
一、入门
1、《python编程》
2、《python学习手册》
3、《python基础教程》
4、《笨办法学python3》
5、《python编程快速上手》
二、进阶
1、《python深度学习》
2、《流畅的python》
3、《python核心编程》
4、《python高级编程》
5、《python性能分析与优化》
三、职业
web框架:
1、《深入理解Flask》
2、《轻量级Django》
3、《Django基础教程》
4、《Python Web开发:测试驱动方法》
5、《Flask Web开发:基于Python的Web应用开发实战》
爬虫开发:
1、《用Python写网络爬虫》
2、《Python网络数据采集》
3、《精通Python爬虫框架Scrapy》
4、《Python爬虫开发与项目实战》
5、《Python 3网络爬虫开发实战》
数据分析
1、《Python数据处理》
2、《Python数据科学手册》
3、《Python金融大数据分析》
4、《利用Python进行数据分析》
5、《Python数据可视化编程实战》
人工智能
1、《集体智慧编程》
2、《机器学习实战》
3、《Python深度学习》
4、《Python神经网络编程》
5、《Python机器学习经典实例》
但说到如何系统的学习Python,好学编程总结了一套适合新手的学习路线,不过这个是数据分析方向,对数据分析感兴趣的可以接下来继续阅读。
第1步,基础入门
很多人喜欢搞一本厚厚的书来看,虽然看完了但是还不会用Python,这是最大的悲哀。
伤心吧?难过吧?
其实,你只需要,看菜鸟教程网站的这个教程就足够了,网站地址:Python3教程|菜鸟教程
这一阶段的辅助工具:当你看到无法理解的代码或者概念时,可以将代码复制到下面这个网站,它会将你的代码用图形化的方式显示出来,便于你理解:Python Tutor code visualizer: Visualize code in Python, JavaScript, C, C++, and Java
如果你不知道代码在内存中是如何运行的,不妨把它拷贝到Tutor里可视化执行一遍,加深理解。
第2步:数据分析进阶
上面第1步已经打好了Python编程的基础,现在进入数据分析的学习阶段。推荐一本书《利用Python进行数据分析》就够了。
看到书里涉及到到当统计概率知识看不懂的时候,这时候反过来再学习统计概率的知识。
很多人错误的学习方式是,先学习统计概率,再去学习数据分析编程工具(Excel,Python,R)。最后抱怨太难了,学不会。
这其实学习方法是错误的。这是为什么呢?
有两个原因:
1)因为很多统计概率讲的都是复杂的数学公式,却不讲统计概率在生活中如何应用的。这样造成的结果就是你学习了很多,但是也忘记了很多。
2)统计概率知识大多数时候是理论基础,如果不结合数据分析工具(Excel,Python,R)来使用,你肯定学不会。
比如你学习了四分位数的理论,但是如何在实际中使用的,你不会数据分析的工具,你当然不会用了。
但是如果你会数据分析的工具,实际操作就一行代码,四分位就计算出来了。你当然兴奋了,一高兴学习兴趣也就上来了。
所以,好学编程建议,也是正确的学习方式是:先学习基础的数据分析工具用法,当遇到统计概率知识的时候,再来补这个知识,边学习边用数据分析工具实现一遍。
3. 数据分析高级-统计概率知识
统计概率知识学习其实很简单,只是很多老师和书把这个东东讲复杂了。学会下面图中的知识,你就可以学会统计概率了:
好学编程给大家简单解释下,上面的图。
如果你的学习目的是:提高认知,将统计概率应用在生活中,用于指导你面对重大决策时做出最好的选择,你的应该看《赤裸裸的统计学》这本书够了。
如果你的学习目的是:学习大数据的基础知识:统计概率,希望成为数据分析师,实现升职加薪的目的,那你的学习参考书是《深入浅出统计学》或者《商务与经济统计》。
《深入浅出统计学》适合没有任何统计概率基础的人学习,这本书足够有趣和简单。
如果你之前上学学习过一些统计概率的课,但是最后还是把课堂学的内容还给了老师,你应该选择看《商务与经济统计》这本书来重新巩固你基础知识。
好学编程觉得学会高级知识,你就不再是一个苦逼的搬砖了,而且会帮助你实现年薪增幅的目标。