四柱汉诺塔
思路:
1、x个盘子A-(B/D)→C
2、n-x个盘子A-(B)→D
3、x个盘子C-(A/B)→D
让x从1到n-1,步数取最小值
>递归基本结束条件
hanoi4(0)=0,hanoi4(1)=1,hanoi4(2)=3
>缩小规模
对于取定的x值(小于n)
第一步步数就是hanoi4(x)
第二步步数就是hanoi3(n-x)=2**(n-x)-1
第三步步数还是hanoi4(4)
三步相加的H(x)=2*hanoi4(x)+2**(n-x)-1
>递归调用
hanoi4(n) = min([H(x) for x in range(1,n)])
法一:
n=int(input())
def hanoi4(n):
if n == 0:
return 0
elif n == 1:
return 1
elif n == 2:
return 3
else:
H = []
for x in range(1,n):
H.append(2*hanoi4(x) + 2**(n-x)-1)
return min(H)
print(hanoi4(n))
大量的重复计算,最后一个用例会超时
法二:
h4cache = [None for x in range(n+1)]
def hanoi4(n):
if h4cache[n]:
return h4cache[n]
if n == 0:
h4cache[n] = 0
if n == 1:
h4cache[n] = 1
if n == 2:
h4cache[n] = 3
else:
H = []
for x in range(1,n):
H.append(2*hanoi4(x) + 2**(n-x)-1)
h4cache[n] = min(H)
return h4cache[n]
法三:
>functools模块的lru_cache装饰器
>对产生大量重复计算的递归函数自动提供函数缓存值
>注意:参数为不可变类型;参数相同,函数值必须相同
from functools import lru_cache
@lru_cache(maxsize=128)
+'法一'