三柱汉诺塔&四柱汉诺塔

汉诺塔问题_哔哩哔哩_bilibili

三柱汉诺塔,从整体来看,分为三部

1.先让n-1个盘先由a柱放在b柱

2.把第n个盘由a柱放在c柱

3.将这n-1个盘由b柱移动到c柱

而其中的递归过程就是直到这n-1个盘变成一个了并且放到了c盘,那递归就可以结束了。

我们可以用节点来考虑这个问题,如图所示

 其中对于c节点那里,理解起来就是:

先让n-1个盘子从x柱移动到z柱子,其中我们借助了z柱子(肯定要借助,不然整体也过不去)

然后第n个盘子可以直接过去。最后n-1个盘子借助x柱子从y柱子移动到了z柱子。这是简单的三柱汉诺塔问题。题解如下:

#include<iostream>
#include<algorithm>
int a[30];
int ans,n;
using namespace std;
int hannuo3(int n)
{
	if (n == 1)
	{
		ans++;
	}
	else {
		hannuo3(n - 1);
		ans++;
		hannuo3(n - 1);//这三部就相当于是节点的左中右节点的实现
	}
return ans;
}
int main()
{
	cin >> n;
	cout<<hannuo3(n);
	return 0;
}

这是简单求n个盘子移过去最小要多少步骤,如果要是显示出每个盘子都经历什么移动步骤,可修改代码如下:

#include<iostream>
#include<algorithm>
int a[30];
int ans, n;
using namespace std;
int hannuo3(int n, char x, char y, char z)
{
	if (n == 1)
	{
		ans++;
		printf("%d from %c柱 to %c柱\n", n, x, z);
	}
	else {
		hannuo3(n - 1, x, z, y);
		ans++;
		printf("%d from %c柱 to %c柱\n", n, x, z);
		hannuo3(n - 1, y, x, z);
	}
	return ans;
}
int main()
{
	cin >> n;
	cout<<hannuo3(n, 'x', 'y', 'z');
	return 0;
}

此时有了这个基础,汉诺四塔的问题可以开始写。

算法思想:
用如下算法移动盘子(记为FourPegsHanoi):
1)、将A柱上n个盘子划分为上下两部分,下方部分共有k(1≤k≤n)个盘子,上方部分共有n - k个盘子。
2)、将A柱上面部分n–k个盘子经过C、D柱移至B柱。
3)、将A柱剩余的k个盘子经过C柱移至D柱。
4)、将B柱上的n–k个盘子经过A、C柱移至D柱。

也就是说第二步第四步我们使用汉诺四塔算法,而第二步我们使用汉诺三塔即可。

#include <iostream>
using namespace std;
int hannuo3(int n, char a, char b, char c) //a->c b做中间柱子 
{
	if (n == 1)
	{
		return 1;
	}
	int now = 0;
	now += hannuo3(n - 1, a, c, b);
	printf("%c->%c\n",a,c);
	now++;
	now += hannuo3(n - 1, b, a, c);
	return now;
}

int hannuo4(int n, char a, char b, char c, char d)
{
	if (n == 1)
	{
		printf("%c->%c\n",a,d);
		return 1;
	}
	int minans = 100000;
	for (int k = 1; k < n; k++)
	{
		int ans = 0;
		ans += hannuo4(n - k, a, c, d, b); //n-k指的是上面那部分,k值得是下面部分 
		ans += hannuo3(k, a, c, d);
		ans += hannuo4(n - k, b, a, c, d);
			minans = ans;
	}
	return minans;
}

int main() {
	int n;
	cin >> n;
	cout << hannuo4(n, 'A', 'B', 'C', 'D') << endl;
	return 0;
}

四柱汉诺塔由此实现。

  • 2
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 4
    评论
### 回答1: 离散数学中的四柱诺塔问题是一个经典的递归问题。在传统的三柱诺塔问题中,我们有三根柱子:起始柱(A),辅助柱(B)和目标柱(C)。而在四柱诺塔问题中,我们有四根柱子:起始柱(A),中间柱(B),辅助柱(C)和目标柱(D)。 找到四柱诺塔问题的k可以通过递归的方式来解决,具体的步骤如下: 1. 首先,我们需要明确的是在三柱诺塔问题中,我们将移动n个盘子需要进行2^n - 1次移动。在四柱诺塔问题中,我们需要进行k次移动。 2. 当n=1时,只有一个盘子需要移动。我们可以直接将它从起始柱A移动到目标柱D,完成第一次移动。 3. 当n&gt;1时,我们可以将问题分解为多个子问题。每次将n个盘子分成两部分:第一部分由1个盘子组成,第二部分由n-1个盘子组成。我们需要进行k次移动。首先将n-1个盘子通过递归的方式从A柱移到C柱上,完成k次移动。然后,将第k次移动时的盘子从A柱移到D柱,完成第k次移动。再将n-1个盘子从C柱移回到A柱上,完成k次移动。最后将第k次移动时的盘子从D柱移到C柱上,完成最后一次移动。 4. 如此递归下去,直到n=1时,问题得以解决。 综上所述,我们可以通过递归的方式来解决四柱诺塔问题,并找到k次移动的方法。 ### 回答2: 离散数学中,四柱诺塔是一种将圆盘从一根柱子移动到另一根柱子的数学问题。在四柱诺塔中,我们有四根柱子,标记为A、B、C、D,以及n个不同大小的圆盘,初始状态下所有的圆盘都在柱子A上。 想要找到四柱诺塔的k,我们可以借助递归思想进行分析。假设目标是将n个圆盘从柱子A移动到柱子B上。首先,我们可以将这个问题简化为将n-1个圆盘从柱子A移动到柱子C上,同时保持柱子D为空柱子。 接下来,我们将n号圆盘从柱子A移动到柱子D上,以便为后续操作让出空间。然后,我们将n-1个圆盘从柱子C移动到柱子D上,同时保持柱子B为空柱子。 最后,我们将n号圆盘从柱子D移动到柱子B上。至此,我们成功将n个圆盘从柱子A移动到柱子B上。 通过以上的递归思想,我们可以找到四柱诺塔的k。具体步骤如下: 1. 当n=1时,直接将圆盘从柱子A移动到柱子B上,此时k=1。 2. 当n&gt;1时,将n-1个圆盘从柱子A移动到柱子C上,同时保持柱子D为空柱子。此时,k为n-1个圆盘的诺塔问题的k。 3. 将n号圆盘从柱子A移动到柱子D上,此时k增加1。 4. 将n-1个圆盘从柱子C移动到柱子D上,同时保持柱子B为空柱子。此时,k为n-1个圆盘的诺塔问题的k。 5. 将n号圆盘从柱子D移动到柱子B上,此时k增加1。 根据以上的步骤,我们可以找到四柱诺塔的k。 ### 回答3: 离散数学中的四柱诺塔问题是指在四个柱子上将一堆盘子从柱子A移动到柱子D,其中每个盘子的大小都不同,且较大的盘子不能放在较小的盘子上面。要找到这个问题中的k,我们可以使用递归的方法来解决。 首先,我们需要理解诺塔问题的递推关系。对于n个盘子的诺塔问题,我们可以将其划分为两个子问题:将n-1个盘子从柱子A移动到柱子C,再将第n个盘子从柱子A移动到柱子D,最后将n-1个盘子从柱子C移动到柱子D。这里,我们可以将移动过程看作一个递归过程。 对于四柱诺塔问题,我们可以将其划分为三个子问题:将n-1个盘子从柱子A移动到柱子C,再将第n个盘子从柱子A移动到柱子D,最后将n-1个盘子从柱子C移动到柱子D。因此,我们可以得到递推公式如下: F(n) = 2F(n-1) + 1 其中,F(n)表示n个盘子的最少移动次数。通过这个递推公式,我们可以求解出每个n值对应的最少移动次数。 具体来说,我们可以使用循环来计算F(n)的值。当n等于1时,F(n)等于1;当n大于1时,使用循环从n-1开始递减计算F(n)的值,直到n递减至1为止。最后得到的F(n)即为所求的k。 总结起来,离散数学四柱诺塔问题中的k值可以通过递推关系 F(n) = 2F(n-1) + 1 计算得出,其中n为盘子的数量。通过循环计算可以求解出每个n值对应的最少移动次数,进而找到k值。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值