一.思路
递归思想:
1.将A柱上n个盘子划分为上下两部分,下方部分共有k(1≤k≤n)个盘子,上方部分共有n - k个盘子。
2.将A柱上面部分n–k个盘子经过C、D柱移至B柱。
3.将A柱剩余的k个盘子经过C柱移至D柱。---三柱汉诺塔
4.将B柱上的n–k个盘子经过A、C柱移至D柱。
详细见代码注解
二.代码
#include<bits/stdc++.h>
using namespace std;
//递归:
//1.将A柱上n个盘子划分为上下两部分,下方部分共有k(1≤k≤n)个盘子,上方部分共有n - k个盘子。
//2.将A柱上面部分n–k个盘子经过C、D柱移至B柱。
//3.将A柱剩余的k个盘子经过C柱移至D柱。---三柱汉诺塔
//4.将B柱上的n–k个盘子经过A、C柱移至D柱。
//步骤3中,由于只借助一个空柱,将A移到D,因此视为三柱塔
//三柱塔解法:
//1.递归:
//n-1个盘从A移到C,第n个盘从A直接放到D,再将n-1个盘从C移到D,最终完成n个盘从A移到D
//而n-1个盘从A移到C(C移到D)的过程和n个盘从A移到D的过程可视为递归过程(都是通过一个空柱进行转移)
//2.公式:
//F(n)=2*F(n-1)+1----两步F(n-1):A到C的n-1和C到D的n-1,
//高中数列知识:F(1)=1,最终推得F(n)=2^n-1,即将n个盘从A经过C移到D的步骤数
long long int hannuo3(int n){
return pow(2,n)-1;
}
//四柱塔解法:
//1.递归(递归会超时):
//原问题:将A的n个盘通过BC移到D
//将A的前k个盘通过CD移到B(k的值影响最终步数--取min)
//将A的后n-k个盘通过C移到D---2^(n-k)-1
//将B的k个盘通过AC移到D
//2.公式:
//F(n)=2*F(k)+2^(n-k)-1
long long int hannuo4(int n){
int F[10000]={0};
F[1]=1;
//使用公式,分步求得F[2]~F[n],分别表示将2,3,4...n个盘子通过两根空柱移到另一根柱子的最小步数
for(int i=2;i<=n;i++){
long long int min=1000000;
for(int k=1;k<i;k++){
//寻找盘子数为i时,怎么划分i个盘子为k和i-k能够得到最小的步数,结果即为i个盘子通过两根空柱移到另一根柱子的最小步数
long long int step=2*F[k]+hannuo3(i-k);
if(step<min){
min=step;
}
}
F[i]=min;
}
return F[n];
}
int main( )
{
int f;
cin>>f;
for(int n=1;n<=f;n++){
cout<<hannuo4(n)<<endl;
}
return 0;
}