Spark从入门到精通(七)--Spark优化

Spark优化

1.资源优化

搭建集群
在Spark安装路径下 spark/conf/spark-env.sh配置:
SPARK_WORKER_CORES=XXX
SPARK_WORKER_MEMORY=XXX

2.提高并行度
sc.textFile(xx,minnum)
sc.parallelize(xx,num)
sc.makeRDD(xx,num)
sc.parallelizePairs(List<Tuple2<xx,xx>>,num)
RDD的算子: repartition(num)coalesce(num)reduceByKey(num)join(num)groupByKey(num)distinct(num)
rdd.partitionBy 自定义分区器
3.代码优化

避免创建重复的RDD
对多次使用的RDD持久化
尽量避免使用shuffle类的算子
广播变量+map类的算子 代替Join
尽量使用map端有预聚合(map-combine)的算子

    1)减少map端shuffle落地数据量
    2)减少reduce端拉取的数据量
    3)减少节点之间传输的数据量
    reduceByKey,aggregateByKey,combinerByKey
使用高性能的算子
    1) 使用reduceByKey代替groupByKey
    2) 使用mapPartitions代替map
    3) 使用foreachPartitions代替foreach
    4) 对RDD大量过滤数据之后使用repartition/coalesce减少分区
mapPartitionsToPair/flatMapPartitionsToPair
优化数据结构
在编写Spark的代码时,尽量保持以下三个原则:
    1) 尽量使用原生的数据类型代替字符串。
    2) 尽量使用字符串代替对象。
    3) 尽量使用数组代替Map集合。
使用Kryo序列化方式
SparkConf.set(“spark.serializer”,
“org.apache.spark.serializer.KryoSerializer”).
registerKryoClasses(new Class[]{SpeedSortKey.class})

4.数据本地化调优

    spark.locality.wait.process 3s
    spark.locality.wait.node 3s
    spark.locality.wait.rack 3s

5.Shuffle调优

spark.reducer.maxSizeInFlight 48M
    reduce端一次拉取数据的量,可以设置多一些,减少节点之间数据的拉取次数。
spark.shuffle.io.maxRetries 3
    task在节点之间拉取数据尝试重试的次数,可以设置多一些,减少由于网络延迟或者数据所在节点Executor JVM 等待GC导致的失败。
spark.shuffle.io.retryWait 5s
    task拉取数据默认task失败的等待间隔。
spark.shuffle.sort.bypassMergeThreshold
    如果数据shuffle过程中不需要map端的聚合,只是将数据分散,可以使用bypass机制,默认这个参数是200。当Spark应用程序reduce task个数小于等于这个值时才会采用bypass机制,如果reduce task 个数大于这个值,可以设置这个参数大一些,使用bypass机制。

6.内存调节

统一内存中,降低spark.memory.fraction参数值,默认是0.6,如果Spark应用程序中对RDD的缓存要求不高,或者shuffle数据量不大,可以降低这个参数给task运行足够的内存。

7.堆外内存调节

yarn下:
    --conf spark.yarn.executor.memoryOverhead=2048 单位M
standalone下:
    --conf spark.executor.memoryOverhead=2048单位M

8.数据倾斜

1) 使用Hive ETL解决数据倾斜
2) 过滤少数倾斜的key
3) 增加并行度
4) 双重聚合方式解决数据倾斜

在这里插入图片描述

5)将reduce Join转换成map Join
    普通的join是会走shuffle过程的,而一旦shuffle,就相当于会将相同key的数据拉取到一个shuffle read task中再进行join,此时就是reduce join。但是如果一个RDD是比较小的,则可以采用广播小RDD全量数据+map算子来实现与join同样的效果,也就是map join,此时就不会发生shuffle操作,也就不会发生数据倾斜。
6)采样倾斜key并分拆join操作
    与第四种方式类似,采用将倾斜的key增加随机前缀的方式

    到这里,Spark在大数据方面的应用就差不多结束了,希望对大家在使用spark开发的过程中能有所帮助,Spark MLlib 在机器学习方面的应用之后在分享机器学习的时候再来分享。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: SparkSQL是Spark生态系统中的一个组件,它提供了一种基于结构化数据的编程接口,可以让用户使用SQL语言来查询和处理数据SparkSQL支持多种数据源,包括Hive、JSON、Parquet等,同时也支持将查询结果输出到不同的存储系统中。SparkSQL还提供了DataFrame和Dataset两个API,可以让用户以类似于关系型数据库的方式来处理数据。通过SparkSQL,用户可以更方便地进行数据分析和处理,提高数据处理效率和准确性。 ### 回答2: SparkSQL是Spark生态系统中的一部分,能够提供高效的数据处理和快速的查询操作。它支持执行结构化数据处理的SQL语法和DataFrame API,并可与Python、Java、Scala进行交互。 在学习SparkSQL之前,需要掌握Spark基础的RDD编程,理解Spark RDD的概念和操作。接下来,了解SparkSQL的核心组件,即Catalyst Optimizer和Tungsten Execution Engine。 Catalyst Optimizer是SparkSQL的查询优化器,它能够对查询语句进行优化,提高查询速度。它可以通过逻辑优化、物理执行优化和代码生成优化来提高查询效率。 Tungsten Execution Engine是SparkSQL的执行引擎,它通过使用自定义的内存管理和计算支持来提高性能。Tungsten的内存管理器可以在JVM之外使用本地内存,这在处理大型数据集时非常有用。 了解了这些基础概念后,就可以开始学习SparkSQL的语法和操作了。SparkSQL支持的语法类似于传统的SQL语法,但也增加了类似于函数式编程的特性。 在SparkSQL中,数据可以表示为DataFrame或DataSet对象。DataFrame是一个分布式的数据表,类似于传统数据库中的表。DataSet是一个强类型的数据集,可以使用Java或Scala编写类型安全的数据处理逻辑。 SparkSQL还支持连接多个数据源,包括Hive、MySQL、PostgreSQL等。可以使用Spark SQL中的数据源API或JDBC API创建一个JDBC连接并访问数据。 除了基本的查询操作SparkSQL还提供了许多高级操作,如窗口函数、聚合函数、分组集函数等,这些操作可以帮助用户更高效地处理数据。 最后,还要注意SparkSQL的优化和调试。可以通过查看Spark Web UI、使用count()、explain()函数等方法来进行调试和优化。 总之,SparkSQL是Spark生态系统中的一个重要组成部分,它提供了高效的数据处理和快速的查询操作,是处理和分析大型数据集时的重要工具。 ### 回答3: Spark SQL是Spark生态系统中的一个SQL执行引擎,使用它可以方便的在Spark程序中操作结构化的数据。本文将介绍Spark SQL的使用方法,包括如何使用Spark SQL查询结构化数据、如何使用DataFrame和DataSet API来处理数据,以及如何将DataFrame和DataSet与RDD进行交互。 使用Spark SQL查询结构化数据 Spark SQL通过在Spark程序中使用SQL语句来查询结构化数据。在查询之前,需要加载数据文件并将其转换为DataFrame或DataSet。加载数据文件的方法包括加载文本文件、JSON文件、CSV文件等。加载数据文件后,可以使用SQL语句通过DataFrame或DataSet进行数据查询,并将查询结果打印输出或写入文件。以下是实现这些操作的代码示例: //加载文本文件 val lines = spark.read.textFile("file.txt") //加载JSON文件 val json = spark.read.json("file.json") //加载CSV文件 val csv = spark.read.format("csv").option("header", "true").load("file.csv") //使用SQL语句查询数据 json.createOrReplaceTempView("people") val sqlDF = spark.sql("SELECT * FROM people") //将查询结果打印输出 sqlDF.show() //将查询结果写入文件 sqlDF.write.format("csv").save("result.csv") 使用DataFrame和DataSet API处理数据 Spark SQL提供了DataFrame和DataSet API来处理数据。DataFrame是一种带有命名列的分布式数据集合,DataSet是DataFrame的类型安全版本。使用这些API可以操作DataFrame和DataSet中的列和行数据,并进行转换、聚合和合并等操作。以下是使用DataFrame API操作结构化数据的示例代码: //创建DataFrame val df = spark.read.json("file.json") //显示DataFrame的Schema df.printSchema() //选择特定列进行查询 df.select("name", "age").show() //按name和age进行聚合统计 df.groupBy("name", "age").count().show() //将DataFrame转换为DataSet case class Person(name: String, age: Long) val ds = df.as[Person] //使用DataSet API查询 ds.filter(p => p.age > 18).show() 将DataFrame和DataSet与RDD进行交互 Spark SQL支持DataFrame、DataSet和RDD之间的相互转换。通过这种方式,可以在RDD和DataFrame或DataSet之间进行无缝转换,并执行相应的操作。以下是一些将DataFrame和DataSet与RDD进行交互的示例代码: //将RDD转换为DataFrame val rdd = sc.parallelize(Seq((1, "John"), (2, "Mike"), (3, "Lucy"))) val df = rdd.toDF("id", "name") //将DataFrame转换为RDD val rdd = df.rdd //将DataSet转换为RDD val ds = Seq(Person("John", 23), Person("Mike", 32), Person("Lucy", 18)).toDS() val rdd = ds.rdd 总之,Spark SQL是Spark生态系统中的一个非常有用的工具,通过使用它可以方便地进行数据查询和处理。在使用Spark SQL时,需要理解如何加载和查询数据文件、如何使用DataFrame和DataSet API来处理数据,以及如何将DataFrame和DataSet与RDD进行交互。当然,在实际使用中,还需要根据具体情况进行进一步学习和实践。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值