如何用摄像头来测距(opencv) - xylary专栏 - CSDNBlog

<iframe align="center" marginwidth="0" marginheight="0" src="http://www.zealware.com/csdnblog336280.html" frameborder="0" width="336" scrolling="no" height="280"></iframe>
如何用摄像头来测距(opencv)
作者:郭世龙
最近一直忙着找工作,blog都长草了,今天把以前作的一个东西放上来充充门面吧。记得在哪看到过老外做的这个东西,觉得很好玩,就自己也做了一个。在摄像头下面固定一个激光笔,就构成了这个简易的测距装置。看一下图吧。


原 理
假设激光束是与摄像头的光轴完全平行,激光束的中心落点在在摄像头的视域中是最亮的点。激光束照射到摄像头视域中的跟踪目标上,那么摄像头可以捕捉到这个点,通过简单的图像处理的方法,可以在这侦图像中找到激光束照射形成的最亮点,同时可以计算出Y轴上方向上从落点到图像中心的象素的个数。这个落点越接近图像的中心,被测物体距离机器人就越远。由下图图可以计算距离D:

(1)
等式中h是一个常量,是摄像头与激光发射器之间的垂直距离,可以直接测量获得。
θ可通过下式计算:
θ=Num*Rop+Offset (2)
其中:Num是从图像中心到落点的像素个数
Rop是每个像素的弧度值
Offset是弧度误差
合并以上等式可以得到:
(3)
Num可以从图像上计算得到。Rop和Offset需要通过实验计算获得。首先测量出D的准确值,然后根据等式(1)可以计算出准确的θ,根据等式(2)可到只含有参数Rop和Offset的方程。在不同的距离多次测量D的准确值计算θ,求解方程组可以求出Rop和Offset。这里Rop=0.0030354,Offset=0.056514344。


程 序
头文件:
class LaserRange
{
public:
struct RangeResult * GetRange(IplImage * imgRange,IplImage * imgDst);
LaserRange();
virtual ~LaserRange();

private:
unsigned int maxW;
unsigned int maxH;
unsigned int MaxPixel;
RangeResult * strctResult;

// Values used for calculating range from captured image data
const double gain; // Gain Constant used for converting pixel offset to angle in radians
const double offset; // Offset Constant
const double h_cm; // Distance between center of camera and laser
unsigned int pixels_from_center; // Brightest pixel location from center

void Preprocess(void * img,IplImage * imgTemp);
};
cpp文件:

LaserRange::LaserRange():gain(0.0030354),offset(0),h_cm(4.542)
{
maxW=0;
maxH=0;
MaxPixel=0;

pixels_from_center=0; // Brightest pixel location from center
strctResult=new RangeResult;

strctResult->maxCol=0;
strctResult->maxRow=0;
strctResult->maxPixel=0;
strctResult->Range=0.0;
}
LaserRange::~LaserRange()
{
if(NULL!=strctResult) delete strctResult;
}
struct RangeResult * LaserRange::GetRange(IplImage * imgRange,IplImage * imgDst)
{
if(NULL==imgRange) return strctResult;
Preprocess(imgRange,imgDst);

pixels_from_center = abs(120-maxH);
// Calculate range in cm based on bright pixel location, and setup specific constants
strctResult->Range= h_cm/tan(pixels_from_center * gain + offset);

strctResult->PixfromCent=pixels_from_center;
strctResult->maxCol=maxW;
strctResult->maxRow=maxH;
strctResult->maxPixel=MaxPixel;
//strctResult->Range=0.0;
return strctResult;
}

void LaserRange::Preprocess(void *img, IplImage * imgTemp)
{
MaxPixel=0; //处理下一帧前 最大像素值清零;
IplImage* image = reinterpret_cast<iplimage>(img); <br><br>cvCvtPixToPlane( image,0 ,0 ,imgTemp , 0); <br><br>for( int j=((imgTemp-&gt;width-60)/2-1); jwidth-40)/2+59; j++) <br>{ <br>for(int i=5; i<imgtemp->height-5; i++) <br>{ <br><br>if((imgTemp-&gt;imageData[i*imgTemp-&gt;widthStep+j])&gt;MaxPixel) <br>{ <br>if( ((imgTemp-&gt;imageData[(i-1)*imgTemp-&gt;widthStep+j])&gt;MaxPixel) &amp;&amp; ((imgTemp-&gt;imageData[(i-1)*imgTemp-&gt;widthStep+j+1])&gt;MaxPixel) &amp;&amp;((imgTemp-&gt;imageData[(i-1)*imgTemp-&gt;widthStep+j-1])&gt;MaxPixel) ) <br>{ <br>if( ((imgTemp-&gt;imageData[(i+1)*imgTemp-&gt;widthStep+j])&gt;MaxPixel) &amp;&amp; ((imgTemp-&gt;imageData[(i+1)*imgTemp-&gt;widthStep+j+1])&gt;MaxPixel) &amp;&amp;((imgTemp-&gt;imageData[(i+1)*imgTemp-&gt;widthStep+j-1])&gt;MaxPixel) ) <br>{ <br>if((imgTemp-&gt;imageData[i*(imgTemp-&gt;widthStep)+j+1])&gt;MaxPixel) <br>{ <br>if((imgTemp-&gt;imageData[i*(imgTemp-&gt;widthStep)+j-1])&gt;MaxPixel) <br>{ <br>MaxPixel=imgTemp-&gt;imageData[i*imgTemp-&gt;widthStep+j] ; <br>maxW=j; <br>maxH=i; <br>} <br>} <br>} <br>} <br>} <br>} <br><br>} <br>调用函数: <br>int CLaserVisionDlg::CaptureImage() <br>{ <br>// CvCapture* capture = 0; <br><br>// capture = cvCaptureFromCAM(0); //0表示设备号 <br>if( !capture ) <br>{ <br>fprintf(stderr,"Could not initialize capturing...\n"); <br>return -1; <br>} <br><br>// cvNamedWindow( "LaserRangeImage", 1 ); <br>// cvvNamedWindow( "image", 1); <br>cvvNamedWindow( "Dimage", 1); <br><br>for(;;) <br>{ <br>IplImage* frame = 0; <br><br>if(isStop) break; <br>frame = cvQueryFrame( capture ); //从摄像头抓取一副图像框架 <br>if( !frame ) <br>break; <br>if( !imgOrign ) <br>{ <br>//allocate all the buffers <br>imgOrign = cvCreateImage( cvGetSize(frame), 8, 3 ); //创建一副图像 <br>imgOrign-&gt;origin = frame-&gt;origin; <br><br>} <br>cvCopy( frame, imgOrign, 0 ); //将图frame复制到image <br>//cvShowImage("LaserRangeImage",imgOrign); <br><br><br>if(!imgDest) <br>{ <br>imgDest=cvCreateImage( cvSize( imgOrign-&gt;width,imgOrign-&gt;height),8,1); <br>cvZero( imgDest ); <br>} <br>struct RangeResult * temp= laservsion.GetRange(imgOrign,imgDest); <br><br>cvLine( imgOrign,cvPoint(temp-&gt;maxCol,0), cvPoint(temp-&gt;maxCol,imgOrign-&gt;height),cvScalar(100,100,255,0),1,8,0); <br>cvLine( imgOrign,cvPoint(0,temp-&gt;maxRow), cvPoint(imgOrign-&gt;width,temp-&gt;maxRow),cvScalar(100,100,255,0),1,8,0); <br><br><br>// cvvShowImage( "image", imgOrign); <br>cvSaveImage("image.bmp", imgOrign); <br><br>cvvShowImage( "Dimage", imgDest); <br><br>//在PictureBox上显示图片 <br>CDC* pDC = GetDlgItem(IDC_Picture)-&gt;GetDC(); <br>CDC dcmemory; <br>BITMAP bm; <br>dcmemory.CreateCompatibleDC(pDC); <br>CBitmap* pBmp; <br>CString szFileName = "image.bmp"; <br>HBITMAP hBk = (HBITMAP)::LoadImage(NULL,szFileName,IMAGE_BITMAP,0,0,LR_LOADFROMFILE); <br>if(NULL!=hBk) <br>{ <br>pBmp=CBitmap::FromHandle(hBk); <br>pBmp-&gt;GetObject(sizeof(BITMAP), &amp;bm); <br>dcmemory.SelectObject(pBmp); <br>pDC-&gt;BitBlt(0, 0, bm.bmWidth, bm.bmHeight, &amp;dcmemory, 0, 0, SRCCOPY); <br>} <br><br><br>char str[80]; // To print message <br>CDC *pDCp= GetDC(); <br>char str2[80]; <br><br>// Display frame coordinates as well as calculated range <br>sprintf(str, "Pix Max Value=%d At x= %u, y= %u, PixfromCent= %d",temp-&gt;maxPixel,temp-&gt;maxCol, temp-&gt;maxRow, temp-&gt;PixfromCent); <br>sprintf(str2, "Range= %f cm ",temp-&gt;Range); <br>pDCp-&gt;TextOut(30, 33, str); <br>pDCp-&gt;TextOut(50, 50, str2); <br>ReleaseDC(pDCp); <br><br>int c = cvWaitKey(10); <br>// if( c == ??q?? ) <br>// break; <br><br>} <br>//cvReleaseCapture( &amp;capture ); <br>//cvDestroyWindow("LaserRangeImage"); <br>// cvDestroyWindow( "image"); <br>cvDestroyWindow( "Dimage"); <br>return 0; <br>} <br><br>本文转自 <br><a href="http://blog.csdn.net/xylary/archive/2007/10/25/1843809.aspx">http://blog.csdn.net/xylary/archive/2007/10/25/1843809.aspx</a><br><br><br></imgtemp-></iplimage>
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值