让我们定义 dn 为:dn = pn+1 - pn,其中 pi 是第i个素数。显然有 d1=1 且对于n>1有 dn 是偶数。“素数对猜想”认为“存在无穷多对相邻且差为2的素数”。
现给定任意正整数N (< 105),请计算不超过N的满足猜想的素数对的个数。
输入格式:每个测试输入包含1个测试用例,给出正整数N。
输出格式:每个测试用例的输出占一行,不超过N的满足猜想的素数对的个数。
输入样例:
20
输出样例:
4
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>
//B1007
bool isPrime(int n)
{
if(n<=1)return false;//1不是素数
int sqr=(int)sqrt(1.0*n);//要将整数转换为浮点数double,最快方法是乘1.0
for(int i=2;i<=sqr;i++){//<= 等于号非常关键,不要漏了
if(n%i==0)return false;
}
return true;
}
int main()
{
int num=0;//输入的范围
int count=0;// 记录满足条件的个数
scanf("%d",&num);
// for(int j=3;j<=num;++j){//测试打印出素数
// if(isPrime(j))printf("%d ",j);
// }
//思路是判断奇数是否满足条件即可
for(int j=3;j<=num-2;j+=2){
if(isPrime(j)&&isPrime(j+2)){
count++;
}
}
printf("%d",count);
return 0;
}