一、题目详情
假设你正在爬楼梯。需要 n 阶你才能到达楼顶。
每次你可以爬 1 或 2 个台阶。你有多少种不同的方法可以爬到楼顶呢?
注意: 给定 n 是一个正整数。
示例:
输入: 2
输出: 2
解释: 有两种方法可以爬到楼顶。
1. 1 阶 + 1 阶
2. 2 阶
二、思路
设f(n)为爬n阶楼梯的方法,根据我们最后一步迈1个还是2个台阶,很容易得到f(n)=f(n-1)+f(n-2)。
这就是个斐波那契数列的问题呀,初始值f(1)=1,f(2)=2。我们可以直接采用递归的方法:
public int climbStairs(int n) {
if(n==1)
return 1;
if(n==2)
return 2;
return climbStairs(n-1)+climbStairs(n-2);
}
但是,递归有个问题,相同的值我们需要重复计算很多次,当n的数字稍微大一点,就会非常消耗时间。
当然,我们可以将计算的值保存下来,当下次需要的时候直接返回,这样也是可以的。
这里,我们采用动态规划自底向上的方法,题目很明显符合动规的特征,最优子结构和重叠子问题。
三、代码
class Solution {
public int climbStairs(int n) {
//设f(n)为爬n阶楼梯的方法
//f(n)=f(n-1)+f(n-2)
if(n==1)
return 1;
if(n==2)
return 2;
int f[]=new int[n+1];
f[1]=1;
f[2]=2;
for(int i=3;i<=n;i++) {
f[i]=f[i-1]+f[i-2];
}
return f[n];
}
}