在软件里调用本地大模型

部署运行你感兴趣的模型镜像

想在自己的PC上部署一个大模型吗?只需两步:

  1. Ollama.com下载Ollama安装程序,并安装;
  2. 在控制台执行一条ollama指令下载指定的模型,比如ollama run deepseek-r1:8b 即为下载80亿参数的DeepSeek-R1-0528版本,等下载完成,即可愉快地对话啦。

Ollama支持Windows、Linux、macOS,默认安装到C盘,须确保C盘有5GB以上的空间。Ollama支持的大模型有DeepSeek-R1, Qwen 3, Llama 3.3, Qwen 2.5‑VL, Gemma 3等。可以去官网Ollama Search 挑选,然后执行页面顶部提示的命令行即可。

接下来的问题是:怎么把大模型的对话能力嵌入到自己的软件里?既然Ollama是控制台输入/输出,我最初的想法是通过匿名管道来拦截它的输入输出,写了测试程序,结果没有跑通!其实,有更简单的方法,因为Ollama提供了REST API。如果在浏览器地址栏里输入http://localhost:11434,可以看到Ollama服务已经在默默工作了(要不然,可以在控制台运行ollama serve启动服务):

与Ollama服务器的通信方法也很简单,C++参考代码如下:

void CConsoleHostTestDlg::OnBnClickedButtonTest()
{
	httplib::Client cli("localhost", 11434);

	// 构建请求JSON
	std::string request = R"(
    {
        "model": "llama2",
        "prompt": "你好,请介绍一下自己。",
        "stream": false
    }
    )";

	// 调用Ollama API
	auto res = cli.Post("/api/generate", request, "application/json");

	if (res && res->status == 200) {
		std::cout << "模型回复:" << res->body << std::endl;
	}
	else {
		std::cout << "请求失败!";
		if (res) {
			std::cout << "状态码:" << res->status << std::endl;
		}		
	}
}

完整的演示程序在这里:https://github.com/luqiming666/OllamaTest,涉及如何在局域网里从一台机器请求另一台机器上的Ollama服务,以及如何做流式响应处理。

您可能感兴趣的与本文相关的镜像

Llama Factory

Llama Factory

模型微调
LLama-Factory

LLaMA Factory 是一个简单易用且高效的大型语言模型(Large Language Model)训练与微调平台。通过 LLaMA Factory,可以在无需编写任何代码的前提下,在本地完成上百种预训练模型的微调

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值