参考资料
算法解读
概述
摩尔投票法(Boyer–Moore majority vote algorithm)出自论文,算法解决的问题是如何在任意多的候选人(选票无序),选出获得票数最多的那个。常见的算法是扫描一遍选票,对每个候选人进行统计的选票进行统计。当候选人的数目固定时,这个常见算法的时间复杂度为: O ( n ) O(n) O(n),当候选人的数目不定时,统计选票可能会执行较长时间,可能需运行 O ( n 2 ) O(n^2) O(n2)的时间。当选票有序时,可以很容易编出 O ( n ) O(n) O(n)的程序,首先找到中位数,然后检查中位数的个数是否超过选票的一半。这篇论文针对无序且侯选人不定的情形,提出了摩尔投票算法。算法的比较次数最多是选票(记为n)的两倍,可以在 O ( n ) O(n) O(n)时间内选出获票最多的,空间开销为 O ( 1 ) O(1) O(1)。
算法
- 形象化描述
想象着这样一个画面:会议大厅站满了投票代表,每个都有一个牌子上面写着自己所选的候选人的名字。然后选举意见不合的(所选的候选人不同)两个人,会打一架,并且会同时击倒对方。显而易见,如果一个人拥有的选票比其它所有人加起来的选票还要多的话,这个候选人将会赢得这场“战争”,当混乱结束,最后剩下的那个代表(可能会有多个)将会来自多数人所站的阵营。但是如果所有参加候选人的选票都不是大多数(选票都未超过一半),那么最后站在那的代表(一个人)并不能代表所有的选票的大多数。因此,当某人站到最后时,需要统计他所选的候选人的选票是否超过一半(包括倒下的),来判断选票结果是否有效。
- 算法步骤
算法分为两个阶段:pairing阶段和counting阶段。
-
pairing阶段:两个不同选票的人进行对抗,并会同时击倒对方,当剩下的人都是同一阵营,相同选票时,结束。
-
counting阶段:计数阶段,对最后剩下的下进行选票计算统计,判断选票是否超过总票数的一半,选票是否有效。
- pairing阶段的简化
选票不同就要大干一架,太过粗鲁,这里提供一种更加现代化的文明方式。
在场的有个叫onwaier
的,他很聪明,他想到一个方法。他用他那犀利人目光扫一遍所有代表们的选票,在脑子记住两件事,当前的候选人的名字cand
和他对应的计数k
(并不是他的选票数)。起始时,k
的值为0,看每个人的选票时,先想想现在k
是否为0,如果是0就将cand
更新为他将看到的候选人的名字并且将k
的值更新为1。观察每个人选票的过程,如果这个人的选票与cand
相同,则将k
的值加1;否则,将k
的值减1。最后的cand
可能胜选,还需统计他的总选票数是否超过一半。
算法证明
证明:
假设共有n个代表(一人一票,选票总数为n)。当onwaier
看到第i个代表的选票时