三星固态硬盘PRO 和 EVO的区别

三星固态硬盘PRO和EVO简单来说定位有所区别,PRO定位高端旗舰型号,EVO定位亲民大众型号。我从官方客服得到答案是,EVO用的是闪存颗粒是Samsung V-NAND 3bit MLC,PRO用的闪存颗粒是Samsung V-NAND 2bit MLC,而实际Samsung V-NAND 3bit MLC就是3D TLC颗粒。

所以可以总结为:PRO主要采用的是可靠性和性能非常出色的MLC NAND颗粒,EVO而采用的是性价比且可靠性也非常高的3D TLC NAND颗粒。

在这里插入图片描述

到底啥是MLC啥是TLC,大家可能有些晕,我先给大家简单普及下。


颗粒的传统分类:SLC、MLC、TLC

简单来说,NAND闪存中存储的数据是以电荷的方式存储在每个NAND存储单元内的,SLC、MLC及TLC就是存储的位数不同。

SLC(Single-Level Cell)单层式存储每个存储单元仅能储存1bit数据,同样,MLC(Multi-Level Cell)可储存2bit数据,TLC(Trinary-Level)可储存3bit数据。一个存储单元上,一次存储的位数越多,该单元拥有的容量就越大,这样能节约闪存的成本,提高NAND的生产量。

在这里插入图片描述

MLC的优势在于,TLC需要识别8种信号,而MLC只需要识别4种信号,可以花更少时间来读取数据。因此,3D NAND出现之前,MLC在性能和可靠性上,是高于TLC的。但是,随着三星的3D TLC的出现,TLC与MLC的性能和可靠性逐渐拉小差距。


3D NAND闪存:三星的杀手锏级产品

刚介绍的NAND闪存不仅有SLC、MLC和TLC类型之分,为了进一步提高容量、降低成本,NAND的制程工艺也在不断进步,从早期的50nm一路狂奔到目前的15/16nm。虽然先进工艺虽然带来了更大的容量,但是NAND闪存的制程工艺是双刃剑,容量提升、成本降低的同时可靠性及性能都在下降,因为工艺越先进,NAND的硅基越薄,可靠性也越差,厂商就需要采取额外的手段来弥补,但这又会提高成本,以致于达到某个点之后制程工艺已经无法带来优势了。

相比之下,3D NAND解决问题的思路就不一样了,想要提高NAND的容量、降低成本,厂商不需要费劲心思去提高制程工艺了,转而堆叠更多的层数就可以了,这样一来3D NAND闪存的容量、性能、可靠性都有了保证了。

由于已经向垂直方向扩展NAND密度,那就没有继续缩小晶体管的压力了,所以三星可以使用相对更旧的工艺来生产3D NAND闪存,做成3D V-NAND MLC或者3D V-NAND TLC。现在三星已经就这样做了,Pro是3D MLC,Evo是3D TLC。使用旧工艺的好处就是P/E擦写次数大幅提升,而且电荷干扰的情况也因为使用旧工艺而大幅减少。


在这里插入图片描述

三星闪存颗粒

过去房子基本都是一层平房,要想在固定大小的房子里隔出更多的房间,就需要压缩每个房间的空间。随着租客越来越多,房间空间越来越小了,只能放一张床了,再继续压缩的话,人都住不了。怎么办?聪明的建筑师想到了可以在房子上再盖房子,拓展垂直空间。现在好了,有人可以搬到楼上去,大家再也不用挤在那么小的房间。3D NAND闪存思想就是这样的,不是一味的在一个平面提升闪存密度,而是堆积多个平面,达到提升闪存容量的目的。将平房增加楼层盖成高楼,单位面积内可容纳的人就会更多,这点是同理的。

在这里插入图片描述

由此我们也可以得出结论3D MLC>3D TLC>2D MLC>2D TLC,现在不管购买三星PRO还是EVO都不用过分考虑SSD闪存寿命问题,可能电脑主机完全淘汰了SSD还健在,而从正常使用考虑三星EVO采用3D TLC技术也足以应对日常数据处理,追求更高性能的用户则可以考虑三星PRO系列产品,性能更为出色!

动物目标检测数据集 一、基础信息 数据集名称:动物目标检测数据集 图片数量: - 训练集:9,134张图片 - 验证集:1,529张图片 - 测试集:1,519张图片 总计:12,182张图片 分类类别: Bear(熊)、Cat(猫)、Cattle(牛)、Chicken(鸡)、Deer(鹿)、Dog(狗)、Elephant(大象)、Horse(马)、Monkey(猴子)、Sheep(绵羊) 标注格式: YOLO格式,包含归一化坐标的边界框数字编码类别标签,支持目标检测模型开发。 数据特性: 涵盖俯拍视角、地面视角等多角度动物影像,适用于复杂环境下的动物识别需求。 二、适用场景 农业智能监测: 支持畜牧管理系统开发,自动识别牲畜种类并统计数量,提升养殖场管理效率。 野生动物保护: 应用于自然保护区监控系统,实时检测特定动物物种,辅助生态研究盗猎预警。 智能养殖设备: 为自动饲喂系统、健康监测设备等提供视觉识别能力,实现精准个体识别。 教育研究工具: 适用于动物行为学研究计算机视觉教学,提供标准化的多物种检测数据集。 遥感图像分析: 支持航拍图像中的动物种群分布分析,适用于生态调查栖息地研究。 三、数据集优势 多物种覆盖: 包含10类常见经济动物野生动物,覆盖陆生哺乳动物与家禽类别,满足跨场景需求。 高密度标注: 支持单图多目标检测,部分样本包含重叠目标标注,模拟真实场景下的复杂检测需求。 数据平衡性: 经分层抽样保证各类别均衡分布,避免模型训练时的类别偏差问题。 工业级适用性: 标注数据兼容YOLO系列模型框架,支持快速迁移学习生产环境部署。 场景多样性: 包含白天/夜间、近距离/远距离、单体/群体等多种拍摄条件,增强模型鲁棒性。
数据集介绍:农场与野生动物目标检测数据集 一、基础信息 数据集名称:农场与野生动物目标检测数据集 图片规模: - 训练集:13,154张图片 - 验证集:559张图片 - 测试集:92张图片 分类类别: - Cow(牛):农场核心牲畜,包含多种姿态场景 - Deer(鹿):涵盖野外环境中的鹿类目标 - Sheep(羊):包含不同品种的绵羊山羊 - Waterdeer(獐):稀有野生动物目标检测样本 标注格式: YOLO格式标准标注,含精确边界框坐标类别标签 数据特征: 包含航拍、地面拍摄等多视角数据,适用于复杂环境下的目标检测任务 二、适用场景 智慧农业系统开发: 支持畜牧数量统计、牲畜行为监测等农业自动化管理应用 野生动物保护监测: 适用于自然保护区生物多样性监测系统的开发与优化 生态研究数据库构建: 为动物分布研究提供标准化视觉数据支撑 智能畜牧管理: 赋能养殖场自动化监控系统,实现牲畜健康状态追踪 多目标检测算法验证: 提供跨物种检测基准,支持算法鲁棒性测试 三、数据集优势 多场景覆盖能力: 整合农场环境与自然场景数据,包含光照变化、遮挡等真实场景 精确标注体系: - 经专业团队双重校验的YOLO格式标注 - 边界框精准匹配动物形态特征 数据多样性突出: - 包含静态、动态多种动物状态 - 涵盖个体与群体检测场景 任务适配性强: - 可直接应用于YOLO系列模型训练 - 支持从目标检测扩展到行为分析等衍生任务 生态研究价值: 特别包含獐等稀有物种样本,助力野生动物保护AI应用开发
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值