从图嵌入视觉看子空间学习

1.流形学习

以下介绍三种常见的流形学习方法,他们的共同点在于:

1)都把数据最本质的结构信息编码在一个图的权值矩阵中;

2)优化问题的求解都可以转化为相似的特征值分解问题。

1.1 局部线性嵌入(LLE)

LLE的基本思想:数据点可能分布于一个非线性的的子流形上,但是每一个局部的邻域可能是线性的这种假设是合理的。所以可以通过线性的系数和相邻的patch来描述和重建每一个patch的局部几何。

假设x1, x2, xn为原始数据空间中的n个数据点,yi表示xi的低维映射,首先构建一个k近邻的图G, 其权值矩阵为M,则其重建误差为

通过求解特征值分解问题得到最优的嵌入。

1.2 ISOMAP

Let dM be the geodesic distance measure on M and d the standard Euclidean distance measure in Rm
ISOMAP的目标是找到一个欧几里得嵌入,使得Rm里面的欧几里得距离可以很好的逼近在流形M上的距离,即:

在真实的数据集中,潜在的流形M通常是未知的,因此测地距离也是未知的。所以为了发掘流形M的最本质的几何结构,做法如下:

1)在所有数据点上构建k近邻图G,来对局部的几何进行建模。

2)通过计算图G上的所有数据对的最短路径来估计在流形M上的所有数据点对之间的几何测地距离。

最优的嵌入也是通过特征值分解来求得

1.3 Laplacian Eigenmap

拉普拉斯特征图方法是基于谱图理论的。给定一个带有权值矩阵W的p近邻的图G,W的定义和LE最优的映射通过解决以下优化问题得到:

最优的嵌入是通过广义的特征值分解来求得。

2. 图嵌入

图嵌入的一般问题:给定一个具有权值W的图G,具有n个顶点,每个顶点表示一个数据点,W是n×n的对称矩阵。

图嵌入的目标是:把图的每个顶点表示为一个低维的向量,该向量保存了顶点对之间的相似性,其中相似性通过边缘权值来度量。其优化问题为:

_ ——>>>>>  

其中,L是拉普拉斯图。

因此,上述的三种流形学习的方法都可以使用图嵌入框架来解释,它们的区别在于W和D的不同选择。

3. 图嵌入的线性扩展

3.1 LDA

3.2 半监督判别分析

3.3 局部敏感判别分析
 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值