方程数值迭代解法

1.不动点迭代

function [x,num] = budongdian(a,tol,f_i)
    i = 0;
    fa = func_x_diedai(a);
    fa = fa(f_i);
    while(abs(a - fa) > tol)
        a = fa;
        fa = func_x_diedai(a);
        fa = fa(f_i);
        i = i + 1;
    end
    num = i;
    x = a;
end

2.二分法迭代

function [x,num] = erfen(a,b,tol,f_i)
    i = 0;
    fa = func_x(a);
    fb = func_x(b);
    while(abs(a - b) > tol)
        x = a + 0.5 * (b - a);
        fx = func_x(x);
        if((fa(f_i) * fx(f_i)) > 0)
            a = x;
            fa = fx;
        elseif((fb(f_i) * fx(f_i)) > 0)
            b = x;
            fb = fx;
        end
        i = i + 1;
    end
    num = i;
end

3.牛顿法迭代

function [x,num] = newton(a,tol,f_i)
    i = 0;
    fa = func_x(a);
    dfa = func_x_qiudao(a);
    fa = fa(f_i);
    dfa = dfa(f_i);
    a2 = a - fa / dfa;
    while(abs(a - a2) > tol)
        a = a2;
        fa = func_x(a);
        dfa = func_x_qiudao(a);
        fa = fa(f_i);
        dfa = dfa(f_i);
        a2 = a - fa / dfa;
        i = i + 1;
    end
    x = a2;
    num = i;
end

4.割线法迭代

function [x,num] = gexian(a,b,tol,f_i)
    i = 0;
    x0 = a;
    fx0 = func_x(x0);
    x1 = b;
    fx1 = func_x(x1);
    fx0 = fx0(f_i);
    fx1 = fx1(f_i);
    x2 = x1 - fx1 * (x1 - x0) / (fx1 - fx0);
    while(abs(x2 - x1) > tol)
        x0 = x1;
        x1 = x2;
        fx1 = func_x(x1);
        fx1 = fx1(f_i);
        fx0 = func_x(x0);
        fx0 = fx0(f_i);
        x2 = x1 - fx1 * (x1 - x0) / (fx1 - fx0);
        i = i + 1;
    end
    num = i;
    x = x2;
end

其中一些前提函数定义如下:

1.函数方程式定义

function fx = func_x(x)
    fx1 = x ^ 5 - 3 * x - 10;
    fx2 = sin(10 * x) + 2 * cos(x) - x - 3;
    fx3 = x + atan(x) - 3;
    fx4 = (x + 2) * log(x ^ 2 + x + 1) + 1;
    fx = [fx1 fx2 fx3 fx4];
end

2.迭代格式定义

function fx = func_x_diedai(x)
    fx1 = (3 * x + 10) ^ 0.2;
    fx2 = sin(10 * x) + 2 * cos(x) - 3;
    fx3 = -atan(x) + 3;
    fx4 = -1 / log(x ^ 2 + x + 1) - 2;
    fx = [fx1 fx2 fx3 fx4];
end

3.求导格式定义

function dfx = func_x_qiudao(y)
    syms x;
    fx1(x) = x ^ 5 - 3 * x - 10;
    fx2(x) = sin(10 * x) + 2 * cos(x) - x - 3;
    fx3(x) = x + atan(x) - 3;
    fx4(x) = (x + 2) * log(x ^ 2 + x + 1) + 1;
    dfx1(x) = diff((fx1(x)));
    dfx2(x) = diff((fx2(x)));
    dfx3(x) = diff((fx3(x)));
    dfx4(x) = diff((fx4(x)));
    dfx = [double(dfx1(y)) double(dfx2(y)) double(dfx3(y)) double(dfx4(y))];
end
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值