NLMeans(4)——总结

从最优线性无偏估计BLUE出发理解:

  • BLUE在独立不同分布的统计下的线性组合估计真值
  • 对于NLMeans而言,其真值的估计为:B=\sum \alpha _kX_k,Xk为像素值。α为权重。权重的计算就比较讲究了。
    • 对于BLUE,认为最优线性估计的权重应该是:{\color{Red} \frac{1}{\sigma_k^2}},即样本方差的倒数作为加权权重。
    • 但在NLM-P中:加权权重为exp(-\frac{d^2*kernel}{h^2}),其中d^2就是样本方差。所以用的是exp(-\sigma ^2)来做的权重函数。
      • NLM-P中,Kernel是均值函数1/d^2
      • NLM-P中,是高斯欧氏距离,Kernel是高斯函数。
    • NLM与BLUE的差异在于权重函数:exp(-kd^2)与1/d^2的区别,且k=kernel/h^2
      • 就普通而言,不加k的话,指数函数比倒数平滑。
      • 但是只要除以h^2,且h^2比1大的话,权重函数是非常平滑的。越来越倾向于均值滤波了。
      • 但是在epx(-\frac{d^2-2\sigma^2}{(k\sigma)^2}),首先减去2σ^2,使得曲线右移。其次除以(kσ)^2会使得曲线变陡峭。
        • 陡峭使得阶梯型更明显。
        • 搬移使得更加陡峭。所以减去2σ^2,会使得曲线更加锐利,筛选能力越强。
      • 加入kernel,其实是对d^2的加权。这个函数对最终结果的影响我认为较小。


补充:BLUE的计算过程 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值