从最优线性无偏估计BLUE出发理解:
- 对于NLMeans而言,其真值的估计为:,Xk为像素值。α为权重。权重的计算就比较讲究了。
- 对于BLUE,认为最优线性估计的权重应该是:,即样本方差的倒数作为加权权重。
- 但在NLM-P中:加权权重为,其中d^2就是样本方差。所以用的是exp(-)来做的权重函数。
- NLM-P中,Kernel是均值函数1/d^2
- NLM-P中,是高斯欧氏距离,Kernel是高斯函数。
- NLM与BLUE的差异在于权重函数:exp(-kd^2)与1/d^2的区别,且k=kernel/h^2
- 就普通而言,不加k的话,指数函数比倒数平滑。
- 但是只要除以h^2,且h^2比1大的话,权重函数是非常平滑的。越来越倾向于均值滤波了。
- 但是在,首先减去2σ^2,使得曲线右移。其次除以(kσ)^2会使得曲线变陡峭。
- 陡峭使得阶梯型更明显。
- 搬移使得更加陡峭。所以减去2σ^2,会使得曲线更加锐利,筛选能力越强。
- 加入kernel,其实是对d^2的加权。这个函数对最终结果的影响我认为较小。