遥感+python 1.4 RPC校正

本文介绍了遥感影像的正射校正和RPC校正原理,通过Python使用GDAL库进行RPC校正的代码实现,强调了自带RPC文件的重要性,并提到可以结合SIFT算法提高精度。
部署运行你感兴趣的模型镜像

遥感+python 1.4 RPC校正


  本章节,笔者主要讲述RPC校正的概念,原理,即代码实现。

一、正射校正

  正射校正一般是通过在像片上选取一些地面控制点,并利用原来已经获取的该像片范围内的数字高程模型(DEM)数据,对影像同时进行倾斜改正和投影差改正,将影像重采样成正射影像。将多个正射影像拼接镶嵌在一起,并进行色彩平衡处理后,按照一定范围内裁切出来的影像就是正射影像图。正射影像同时具有地形图特性和影像特性,信息丰富,可作为GIS的数据源,从而丰富地理信息系统的表现形式。

二、RPC校正原理

  有理多项式系数(rational polynomial coefficients,RPC),实质是有理函数模型(Rational Function Model-RFM)。它可建立起像点和空间坐标之间的关系,不需要内外方位元素,回避成像的几何过程,可以广泛用于线阵影像处理中。RFM将像点坐标表示为以相应地面点空间坐标为自变量的多项式的比值1

三、代码实现

一定要自带RPC文件的影像(.rpc或.rpb文件)位于同一目录下具有统一名字
废话不多说,直接上代码

tif_path = r"D:\RSdata\0626\GF1_WFV1_E117.3_N39.7_20200112_L1A0004547684.tif"
out_path =r"D:\RSdata\0626\GF1_WFV1_E117.3_N39.7_20200112_L1A0004547684_rpc.tif"

gdal.Warp(out_path,
          tif_path,
          format='GTiff',
          rpc=True,
          resampleAlg=gdal.GRIORA_NearestNeighbour)

其中

GRIORA_NearestNeighbour #最近邻插值
GRIORA_Bilinear #双线性插值
GRIORA_Cubic #三次卷积插值

简单吧,GDALWARP YYDS。当然,怎能止步于此?还将利用SIFT算法寻找同名点,提高精度。

<返回目录


  1. https://blog.csdn.net/wokaowokaowokao12345/article/details/128187152 ↩︎

您可能感兴趣的与本文相关的镜像

Python3.9

Python3.9

Conda
Python

Python 是一种高级、解释型、通用的编程语言,以其简洁易读的语法而闻名,适用于广泛的应用,包括Web开发、数据分析、人工智能和自动化脚本

评论 1
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值